

Principles of the Spin Model Checker

Mordechai Ben-Ari

Spin Model Checker
Principles of the

ABC

Mordechai Ben-Ari, BSc, MSc, PhD
Weizmann Institute of Science
Rehovot 76100
Israel

ISBN: 978-1-84628-769-5 e-ISBN: 978-1-84628-770-1

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007941384

c©Springer-Verlag London Limited 2008
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agencies. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered name, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Foreword

Anyone who has tried to write a nontrivial piece of software knows from
bitter experience that the code is not likely to work quite right after the first
successful compilation; nor the second or third. Sometimes, it takes a while to
discover how a seemingly correct program can fail in subtle ways. The same
is of course true for commercially developed software. Small flaws can hide
for years and strike at the most inconvenient moment. So we learn to backup
our data and cope with the apparently inevitable. There are, however, cases
where we do not have the luxury of accepting products that may be subtly
flawed. In some applications, software defects can lead to a loss of life or
cause significant economical damage. Given that so much of our world is
now controlled by software, finding ways to make this software more reliable
is perhaps the most important technical challenge of our age. So, how can we
accomplish this?

Most critical software applications execute in a multithreaded environ-
ment, with numerous external dependencies: they are concurrent. It is es-
pecially the concurrency aspects – the mutual dependencies – that are dif-
ficult to get right. Fortunately, today powerful tools are available to verify
the logical correctness of concurrent (distributed, parallel, or multithreaded)
programs. SPIN is perhaps the leading example of such a tool. Its develop-
ment dates back to roughly 1980, with a first free version publicly released
in 1991. It is often considered to be one of the most powerful model checkers
available.

SPIN is increasingly used in the classroom to teach concurrency and
model checking techniques, but, most important, it is applied in industrial
practice to solve real problems in the construction of large-scale distributed
software systems. The tool has been used for the verification of everything
from operating systems software and communications protocols to railway
signaling systems. Some of the larger applications are especially inspiring. In

vi Foreword

the late 90s, for instance, SPIN was used to verify the control algorithms for
a large new flood control system near Rotterdam in The Netherlands. It was
used between 1999 and 2001 at Bell Laboratories to verify the call processing
software for a new telephone switch. And, finally, SPIN is used increasingly
for a thorough verification of key control algorithms for interplanetary space
missions at NASA.

So far, most publications on the SPIN system have focused on its theo-
retical background, with less attention being paid to routine usage and ap-
plication. This book offers for the first time a comprehensive introduction to
SPIN from a user’s perspective. It makes the capabilities of the tool accessi-
ble to a much broader audience. All key concepts are explained step-by-step,
without fuss, in a clear and instructive way that can get the reader up to
speed very quickly. As such, this book has no competition. This is the best
introduction to the SPIN tool.

Gerard J. Holzmann
Pasadena, California
May 2007

Preface

Surrounded as we are by software for personal computers, electronic gadgets
and entertainment websites, it is easy to lose sight of the massive amount of
software embedded in critical systems. I was surprised when I found out
that the computerized systems in modern cars have half a million lines of
code, and that electronics account for 25% of their cost and this percentage is
forecast to increase.1 Perhaps it is easiest to characterize a critical system as
one that must be delivered without one of those infamous “end user license
agreements” that disavows liability and requires you to renounce any claim
to a guarantee.

Formal methods are powerful tools in the arsenal of software engineers
who develop software that must work correctly. While the principles of for-
mal methods were developed decades ago by pioneers of computer science
like C.A.R. Hoare and the late E.W. Dijkstra, only recently have theoretical
advances and progress in the development of software tools enabled their
widespread use.

Model checking

One of the most powerful formal methods is model checking. In principle
model checking is trivial: simply generate all possible states of a program
and check that the correctness specifications hold in each state. Furthermore,
generating states and checking specifications can be done mechanically by
a software tool. In practice, sophisticated algorithms based upon automata
theory and logic are needed to perform model checking on nontrivial pro-
grams which have billions or trillions of states.

1 Klaus Grimm. Software technology in an automotive company – Major challenges,
Proceedings of the 25th International Conference on Software Engineering, 2003, 498–503.

viii Preface

Even the best model checkers are not “plug and play”: If a program has
even one 32-bit integer variable, at each location during the execution of the
program that variable can give rise to as many as 232 different states. As
the name implies, model checkers do not check programs, but rather models,
which are high level descriptions of a system. The challenge for a software
engineer is to develop a model that faithfully represents the system, while
at the same time remaining sufficiently concise to enable its correctness to
be checked with the available resources. The complementary challenge for
designers of model checkers is to include sufficiently expressive constructs
to facilitate the construction of faithful models, while leaving out constructs
that cannot be efficiently implemented.

SPIN

SPIN is a model checker developed by Gerard J. Holzmann for verifying com-
munications protocols. It has since become widely used in industries that
build critical systems. In 2001, Holzmann received the ACM Software Sys-
tems Award for the development of SPIN. My interest in SPIN arose from my
long-time engagement in teaching concurrent programming. Pieter Hartel
convinced me to look into SPIN, and I found that SPIN is a very rare arti-
fact: Although it is an industrial-strength tool, it can be easily used by stu-
dents. The software is simple to install and to run, and models are written in
PROMELA, which looks like a familiar programming language.

This led to my writing a new edition of the textbook Principles of Concur-
rent and Distributed Programming (Ben-Ari, 2006), which included material on
SPIN. In addition, I built pedagogical software tools that leverage the capa-
bilities of SPIN. I have come to believe that SPIN can be used to introduce
students to important concepts in computer science, such as logic, automata,
concurrency, nondeterminism, and program verification.

The only impediment I found to the wider use of SPIN in computer
science education was the lack of an introductory book. The Spin Model
Checker: Primer and Reference Manual (Holzmann, 2004) contains, in addi-
tion to elementary explanations, a wealth of material on the theory and
implementation of SPIN, and on the design and verification of models for
communications systems. As such, beginners might find it difficult to use as
an introductory text.

Principles of the Spin Model Checker is intended as an introduction to SPIN

for undergraduate students and for programmers without a strong back-
ground in formal methods. It presents the concepts of model checking, the
constructs of PROMELA, and the capabilities of SPIN comprehensively, but
in steps of gradually increasing difficulty. The book is self-contained, but

Preface ix

will probably be accessible only to readers with two or three years of pro-
gramming experience. An elementary knowledge of logic – the propositional
calculus – is also required; see my textbook Mathematical Logic for Computer
Science (Ben-Ari, 2004) if you need help.

The book describes SPIN-based software tools that I have developed: the
JSPIN development environment, SPINSPIDER for visualizing state diagrams,
and VN for experiencing nondeterminism.

Of course, once you actually start to work with SPIN, you will want to
consult The Spin Model Checker and the man pages.2

Overview of the book

Principles of the Spin Model Checker is organized into three parts. Chapters 1
through 5 introduce the main concepts that are needed to write models in
PROMELA and to verify them with SPIN. Chapters 6 and 7 present structures
in PROMELA that are essential for constructing models, while Chapters 8–11
include more advanced and optional material.

Models in SPIN are written in the PROMELA language; its syntax is based
upon that of C, but it is sufficiently different that it seems worthwhile to
give a gentle introduction to PROMELA and SPIN using sequential programs
(Chapter 1). This is followed in Chapter 2 by an introduction to verification,
again within the context of sequential programs. SPIN is primarily used for
modeling and verifying concurrent systems, and this is presented in Chap-
ter 3 on modeling multiprocess systems, in Chapter 4 on the synchronization
of processes, and in Chapter 5 on linear temporal logic that is used to express
correctness specifications in SPIN.

Chapter 6 is concerned with constructs for structuring data and pro-
grams, and Chapter 7 explains channels, which are used for modeling dis-
tributed systems, as well as for implementing data structures.

Chapter 8 diverges from the usual view of model checkers as tools for ver-
ifying concurrent and distributed systems. It shows how SPIN can be used
to teach the important concept of nondeterminism that appears in many
contexts in computer science, such as algorithms and automata. Chapter 9
presents advanced PROMELA constructs and Chapter 10 surveys advanced
capabilities of SPIN for expressing correctness specifications and for optimiz-
ing verifications.

The book concludes with five cases studies in Chapter 11 designed to
bring together the individual PROMELA programming structures that were

2 man pages form the definitive documentation. They can be found in Chapters 16–
19 of the The Spin Model Checker (Holzmann, 2004) and online at the SPIN website;
they can also be downloaded with the SPIN distribution.

x Preface

presented in isolation: (a) the implementation of a complex data structure; (b)
further examples of nondeterministic algorithms; (c) a real-time scheduling
algorithm; (d) a model that uses discrete time; (e) an advanced algorithm for
a distributed system.

Appendix A gives an overview of the software tools I have developed.
For details see the documentation included within the archive for each tool.
Appendix B contains the addresses of relevant websites. A short list of refer-
ences will direct you to more advanced books.

Instructions for running SPIN are given in two forms: (a) using the JSPIN

environment, and (b) commands and arguments for running SPIN directly
from the command line.

The source code of all the PROMELA programs in the book is available on
the companion website at www.springer.com/978-1-84628-769-5.

Conventions

Starred (∗) sections can be skipped on your first reading and returned to later
on. Framed text is used to emphasize important warnings. Passages marked
Advanced can be safely passed over by most readers. Acronyms are used for
several books referred to frequently: SMC for Holzmann (2004), MLCS for
Ben-Ari (2004), and PCDP for Ben-Ari (2006).

Acknowledgements

I am deeply indebted to Gerard J. Holzmann for his support and help dur-
ing the writing of PCDP and of this book, and during the development of
my software tools. I am grateful to Angelika Mader for carefully reading the
manuscript; her eagle eye for obscure explanations significantly improved
the presentation. Thanks also to Pieter Hartel for introducing me to SPIN,
Michal Armoni for collaborating on the VN software, and Dragan Bošnački
for help with modeling discrete time. Finally, it has been a pleasure to work
with Beverley Ford and the entire staff at Springer.

Mordechai Ben-Ari
Rehovot
June 2007

Contents

Foreword . v

Preface . vii

1 Sequential Programming in PROMELA . 1
1.1 A first program in PROMELA . 1
1.2 Random simulation . 2
1.3 Data types . 4

1.3.1 Type conversions . 6
1.4 Operators and expressions . 6

1.4.1 Local variables . 7
1.4.2 Symbolic names∗ . 8

1.5 Control statements . 10
1.6 Selection statements . 10

1.6.1 Conditional expressions∗ . 14
1.7 Repetitive statements . 15

1.7.1 Counting loops . 16
1.8 Jump statements∗ . 17

2 Verification of Sequential Programs . 19
2.1 Assertions . 19
2.2 Verifying a program in SPIN . 23

2.2.1 Guided simulation . 26
2.2.2 Displaying a computation . 26

3 Concurrency . 29
3.1 Interleaving . 29

3.1.1 Displaying a computation . 31
3.2 Atomicity . 33

xii Contents

3.3 Interactive simulation . 34
3.4 Interference between processes . 35
3.5 Sets of processes . 37
3.6 Interference revisited . 38
3.7 Deterministic sequences of statements∗ . 40
3.8 Verification with assertions . 42
3.9 The critical section problem . 44

4 Synchronization . 47
4.1 Synchronization by blocking . 47
4.2 Executability of statements . 50
4.3 State transition diagrams . 51
4.4 Atomic sequences of statements . 54

4.4.1 d_step and atomic∗ . 56
4.5 Semaphores . 58
4.6 Nondeterminism in models of concurrent systems 60

4.6.1 Generating values nondeterministically 61
4.6.2 Generating from an arbitrary range∗ 62

4.7 Termination of processes . 63
4.7.1 Deadlock . 63
4.7.2 End states∗ . 64
4.7.3 The order of process termination∗ 66

5 Verification with Temporal Logic . 69
5.1 Beyond assertions . 69
5.2 Introduction to linear temporal logic . 71

5.2.1 The syntax of LTL . 71
5.2.2 The semantics of LTL . 72

5.3 Safety properties . 75
5.3.1 Expressing safety properties in LTL 75
5.3.2 Expressing safety properties in PROMELA 75
5.3.3 Verifying safety properties in SPIN 77

5.4 Liveness properties . 79
5.4.1 Expressing liveness properties in SPIN 80
5.4.2 Verifying liveness properties in SPIN 81

5.5 Fairness . 83
5.6 Duality . 84
5.7 Verifying correctness without ghost variables∗ 85
5.8 Modeling a noncritical section∗ . 86
5.9 Advanced temporal specifications∗ . 88

5.9.1 Latching . 88

Contents xiii

5.9.2 Infinitely often . 89
5.9.3 Precedence . 90
5.9.4 Overtaking . 91
5.9.5 Next . 93

6 Data and Program Structures . 95
6.1 Arrays . 95
6.2 Type definitions . 97
6.3 The preprocessor . 99

6.3.1 Condition compilation∗ . 100
6.3.2 Macros∗ . 100

6.4 Inline . 101

7 Channels . 105
7.1 Channels in PROMELA . 106

7.1.1 Channels and channel variables . 108
7.2 Rendezvous channels . 109

7.2.1 Reply channels . 110
7.2.2 Arrays of channels . 113
7.2.3 Local channels . 114
7.2.4 Limitations of rendezvous channels 114

7.3 Buffered channels . 115
7.4 Checking the content of a channel . 116

7.4.1 Checking if a channel is full or empty 117
7.4.2 Checking the number of messages in a channel 117

7.5 Random receive∗ . 119
7.6 Sorted send∗ . 121
7.7 Copying the value of a message∗ . 122
7.8 Polling∗ . 122
7.9 Comparing rendezvous and buffered channels 123

8 Nondeterminism∗ . 125
8.1 Nondeterministic finite automata . 125

8.1.1 timeout . 128
8.1.2 Using verification to find accepting computations 128
8.1.3 Finding all counterexamples . 129
8.1.4 λ-transitions . 130

8.2 VN: Visualizing nondeterminism . 131
8.3 NP problems . 133

xiv Contents

9 Advanced Topics in PROMELA∗ . 137
9.1 Specifiers for variables . 137
9.2 Predefined variables . 138

9.2.1 The anonymous variable . 138
9.2.2 Process identifiers . 138

9.3 Priority . 140
9.3.1 Simulation priority . 140
9.3.2 Modeling priority with global constraints 140

9.4 Modeling exceptions . 142
9.5 Reading from standard input . 143
9.6 Embedded C code . 143

10 Advanced Topics in SPIN∗ . 145
10.1 How SPIN searches the state space . 145
10.2 Optimizing the performance of verifications 148

10.2.1 Writing efficient models . 148
10.2.2 Allocating memory for the hash table 149
10.2.3 Compressing the state vector . 152
10.2.4 Minimal automaton . 153
10.2.5 Partial-order reduction . 153

10.3 Never claims . 153
10.3.1 A never claim for a safety property 155
10.3.2 A never claim for a liveness property 156
10.3.3 Never claims for other LTL formulas 157
10.3.4 Predefined constructs for use in never claims 159

10.4 Non-progress cycles . 159

11 Case Studies∗ . 163
11.1 Channels as data structures . 163
11.2 Nondeterministic algorithms . 168

11.2.1 The eight-queens problem . 168
11.2.2 Cycles in a directed graph . 171

11.3 Modeling a real-time scheduling algorithm 173
11.3.1 Real-time systems . 174
11.3.2 Modeling a scheduler in PROMELA 175
11.3.3 Simplifying the model . 177
11.3.4 Modeling a scheduler with priorities 177
11.3.5 Rate monotonic scheduling . 181

11.4 Fischer’s algorithm . 181
11.5 Modeling distributed systems . 186
11.6 The Chandy–Lamport algorithm for global snapshots 187

Contents xv

11.7 The Chandy–Lamport snapshot algorithm in PROMELA 189
11.7.1 Structure of the program . 190
11.7.2 Encoding lists of channels . 191
11.7.3 The environment node . 192
11.7.4 Local data for each node . 192
11.7.5 Nodes of the distributed system . 194
11.7.6 Nondeterministic choice of a channel 196

11.8 Verification of the snapshot algorithm . 197

A Software Tools . 201
A.1 SPIN . 201
A.2 JSPIN . 202
A.3 SPINSPIDER . 203
A.4 VN: Visualizing nondeterminism . 204

B Links . 207

References . 209

Index . 211

1

Sequential Programming in PROMELA

SPIN is a model checker – a software tool for verifying models of physical
systems, in particular, computerized systems. First, a model is written that
describes the behavior of the system; then, correctness properties that ex-
press requirements on the system’s behavior are specified; finally, the model
checker is run to check if the correctness properties hold for the model, and,
if not, to provide a counterexample: a computation that does not satisfy a
correctness property. Model checking is challenging and fascinating because
one must write a model that describes the system in sufficient detail to rep-
resent it faithfully, and yet the model must be sufficiently simple so that the
model checker can perform the verification with the available resources (time
and memory).

Our goal is to learn how to perform model checking in SPIN. We start
with the first stage: learning the PROMELA language that is used for writing
models in SPIN. PROMELA is, in effect, a simple programming language, so
we will show how to use PROMELA to write sequential programs, and then
gradually introduce the constructs used for performing verification and for
writing models of real systems.

1.1 A first program in PROMELA

Assignment statements and expressions in PROMELA are written using the
syntax of C-like languages. Listing 1.1 is a trivial program that reverses the
digits of a three-digit number. Programs in PROMELA are composed of a
set of processes; here we start with a single process declared by the words
active proctype. Processes may have parameters, though we shall not use
them until much later; even if there are no parameters, the parentheses ()

2 1 Sequential Programming in PROMELA

must appear. The statements of the process are written between the braces {
and }. Comments are enclosed between /* and */.

Listing 1.1. Reversing digits

1 active proctype P() {

2 int value = 123; /* Try with a byte variable here ... */

3 int reversed; /* ... and here! */

4 reversed =

5 (value % 10) * 100 +

6 ((value / 10) % 10) * 10 +

7 (value / 100);

8 printf("value = %d, reversed = %d\n", value, reversed)

9 }

In the program we declared two variables, value and reversed, of type
int, the first of which is given an explicit initial value. The value assigned
to the variable reversed is computed from the value of the variable value

using the division and modulo operators; then, the values of both variables
are printed. The printf statement is taken from the C language: a quoted
string followed by a list of variables; the list of variables should match the
format specifiers embedded within the string. The specifier for printing integer
values is %d, and the string can be terminated by the newline character \n.

If you run a random simulation of this program as described in the next
section, SPIN will print:

value = 123, reversed = 321

Advanced: Single-line comments

The single line comment from // until the end of the line is not nor-
mally available in SPIN unless you use a different preprocessor; this
is explained in the man page for macros.

1.2 Random simulation

In simulation mode, SPIN compiles and executes a PROMELA program. Here
we discuss random simulation mode; the meaning of “random” in this con-
text will be apparent later.

By convention, we use the extension pml for PROMELA files.

1.2 Random simulation 3

To run a random simulation:

jSpin

Select Open (ctrl-O) to load a file into the editor window, or File
/ New to create a new file. Edit the program and save the file (File
/ Save (ctrl-S)). A message that the file has been saved appears
in the message pane at the bottom of the frame. It is not necessary
to explicitly save files as this is automatically done before executing
SPIN.
Select Random (alt-R). SPIN will compile and execute the program,
and the compile-time errors or the output from the execution will
appear in the right pane.
You may wish to perform a syntax check before running the program:
select Check (alt-K).
By default, JSPIN displays the state of the program after executing
each instruction; for running the first simple programs in this book
turn this output off by selecting Options / Common / Clear all /

OK and then Options/Save to save the changes.

Command line

Run:

spin filename

Output will be printed on standard output and can be redirected or
piped.

You can set a limit on the number of steps that will be executed in a sim-
ulation run; this will be especially important when we discuss concurrent
programs that need not terminate.

jSpin

Select Settings / Max steps (ctrl-M) and enter a value.

Command line

Run SPIN with the parameter -uN, where N is the maximum number
of steps.

4 1 Sequential Programming in PROMELA

Advanced: Filtering output in jSpin
JSPIN can be used to filter the output so that only the results of cer-
tain printf statements are displayed. Change the configuration file
option MSC to true. Then only lines beginning with the string "MSC:"

will be displayed. This prefix is also used to display process interac-
tions in the Message Sequence Charts of XSPIN; see Chapter 12 of SMC.

Advanced: Input in Promela
By convention, a PROMELA program does not have input, since it is
intended for simulating a closed system. That is, if there is a some
unit in the environment that could influence the system, it should be
modeled as a process. Nevertheless, there is an input channel STDIN
connected to standard input that can be useful for running simula-
tions of a single model with different parameters; see the man pages.

1.3 Data types

The numeric data types of PROMELA are based upon those of the C compiler
used to compile SPIN itself; they are currently as shown in Table 1.1.1 All
effort should be made to model data using types that need as few bits as
possible to avoid combinatorial explosion in the number of states during a
verification: short instead of int and byte instead of short.

Table 1.1. Numeric data types in PROMELA

Type Values Size (bits)

bit, bool 0, 1, false, true 1
byte 0..255 8
short -32768..32767 16
int −231..231 − 1 32
unsigned 0..2n − 1 ≤ 32

The type bool and the values true and false are syntactic sugar for the
type bit and the values 1 and 0, respectively.2 Values of type bit and bool
can be printed only as integer values with specifier %d.

1 The other data types in PROMELA are: chan (Chapter 7), pid (Section 3.5), and
mtype (Section 1.4.2).

2 Syntactic sugar is a term for alternate syntactic constructs that add no additional
capabilities to a programming language, but instead are intended to enable more

1.3 Data types 5

Warning

All variables are initialized by default to zero, but it is recom-
mended that explicit initial values always be given in variable
declarations.

PROMELA does not have some familiar data types:

• There is no separate character type in PROMELA. Literal character values
can be assigned to variables of type byte and printed using the %c format
specifier.

• There are no string variables in PROMELA. Messages are best modeled
using just a few numeric codes and the full text is not needed. In any case,
printf statements are only used as a convenience during simulation and
are ignored when SPIN performs a verification.

• There are no floating-point data types in PROMELA. Floating-point num-
bers are generally not needed in models because the exact values are not
important; it is better to model a numeric variable by a handful of discrete
values such as minimum, low, high, maximum.3

Advanced: Initial values of variables
The recommendation to give explicit initial values is driven not only
by good programming practice; it can also affect the size of models in
SPIN. For example, if you need to model positive integer values and
write

byte n;

n = 1;

there will be additional (and unnecessary) states in which the value
of n is zero.

Advanced: Unsigned integer type

The type unsigned can be used for variables intended to hold un-
signed values of a specified number of bits. It is meaningful when
compression of the state vector is used. See SMC Chapter 3 and the
man page for datatypes.

readable programs to be written. It is easier to read a program that contains
bool done = false than bit done = 0, although there is no semantic difference
whatsoever between them.

3 If floating-point numbers are truly needed you can use them in embedded seg-
ments of C code. SPIN can verify a model with embedded C code on the assump-
tion that this code is correct. See Chapter 17 of SMC.

6 1 Sequential Programming in PROMELA

1.3.1 Type conversions

There are no explicit type conversions in PROMELA. Arithmetic is always per-
formed by first implicitly converting all values to int; upon assignment, the
value is implicitly converted to the type of the variable. In our first program,
if the variable value is declared to be of type byte, the program is still cor-
rect because the computation is performed on integers and then assigned to
the variable reversed of type int. If, however, reversed is declared to be
of type byte, the attempt to assign 321 to that variable will not succeed; the
value will be truncated and an error message printed:

Error: value (321->65 (8)) truncated in assignment

value = 123, reversed = 65

You may be surprised that the error does not cause an exception or the ter-
mination of the program and that the truncated value is printed. SPIN leaves
it up to you to decide if the truncated value is meaningful or not.

1.4 Operators and expressions

The set of operators in PROMELA, together with their precedence and asso-
ciativity, is shown in Table 1.2; the operators are almost identical to those in
C-like languages. Needless to say, it is not a good idea to try to memorize
the table, but rather to use parentheses liberally to clarify precedence and
associativity within expressions!

The following rule is central to the design of PROMELA:

Warning

Expressions in PROMELA must be side-effect free.

The reason for the rule is that expressions are used to determine if a state-
ment is executable or not (Section 4.2), so it must be possible to evaluate an
expression without side effects.

This requirement leads to several differences between PROMELA and the
C language; in PROMELA

• Assignment statements are not expressions.
• The increment and decrement operators (++, --) may only be used as post-

fix operators in an assignment statement like:

b++

1.4 Operators and expressions 7

Table 1.2. Operators in Promela

Precedence Operator Associativity Name

14 () left parentheses
14 [] left array indexing
14 . left field selection
13 ! right logical negation
13 ~ right bitwise complementation
13 ++, -- right increment, decrement
12 *, /, % left multiplication, division, modulo
11 +, - left addition, subtraction
10 <<, >> left left and right bitwise shift
9 <, <=, >, >= left arithmetic relational operators
8 ==, != left equality, inequality
7 & left bitwise and
6 ^ left bitwise exclusive or
5 | left bitwise inclusive or
4 && left logical and
3 || left logical or
2 (-> :) right conditional expression
1 = right assignment

and not in an expression like the right-hand side of an assignment state-
ment:

a = b++

• There are no prefix increment and decrement operators. (Even if there
were, there could be no difference between them and the postfix oper-
ators because they cannot be used in expressions.)

1.4.1 Local variables

The scope of a local variable is the entire process in which it is declared.

Warning

It is not necessary to declare variables at the beginning of a
process; however, all variable declarations are implicitly moved
to the beginning of the process.

8 1 Sequential Programming in PROMELA

This can have weird effects if you are used to the style in the JAVA language
of declaring and initializing variables in the middle of a computation; for
example:

byte a = 1;

. . .

a = 5;

byte b = a+2;

printf("b= %d\n", b);

The output is 3. The variable b is implicitly declared immediately after the
declaration of a; therefore, the expression a+2 uses the initial value 1.

1.4.2 Symbolic names∗

If you just need to declare a symbol for a number, a preprocessor macro can
be used at the beginning of the program:

#define N 10

Textual substitution is used when the symbol is encountered:

i = j % N;

The type mtype can be used to give mnemonic names to values (List-
ing 1.2).4 The advantage of using mtype over a sequence of #define’s is that
the symbolic values can be printed using the %e format specifier, and they
will appear in traces of programs.

Internally, the values of the mtype are represented as positive byte values,
so there can be at most 255 values of the type.

A limitation on mtype is that there is only one set of names defined for an
entire program; if you add declarations, the new symbols are added to the
existing set. Listing 1.3 shows how to add states for traffic signals in which
two lights are on simultaneously (as is done in many countries).

Advanced: Printing values of mtype

The printm statement can be used to print a value of an mtype. See
the man pages for mtype and printf for an explanation of when to
use this instead of the format specifier %e.

4 The term is short for message type because its original use was to give symbolic
names instead of numbers to messages.

1.4 Operators and expressions 9

Listing 1.2. Symbolic names

1 mtype = { red, yellow, green };

2 mtype light = green;

3

4 active proctype P() {

5 do
6 :: if
7 :: light == red -> light = green

8 :: light == yellow -> light = red

9 :: light == green -> light = yellow

10 fi;
11 printf("The light is now %e\n", light)

12 od
13 }

Listing 1.3. Adding new symbolic names

1 mtype = { red, yellow, green };

2 mtype = { green_and_yellow, yellow_and_red };

3 mtype light = green;

4

5 active proctype P() {

6 do
7 :: if
8 :: light == red -> light = yellow_and_red

9 :: light == yellow_and_red -> light = green

10 :: light == green -> light = green_and_yellow

11 :: light == green_and_yellow -> light = red

12 fi;
13 printf("The light is now %e\n", light)

14 od
15 }

10 1 Sequential Programming in PROMELA

1.5 Control statements

While the syntax and semantics of expressions in PROMELA are taken from
C-like languages, the control statements are taken from a formalism called
guarded commands invented by E.W. Dijkstra. This formalism is particularly
well suited for expressing nondeterminism and thus is a good match for
modeling systems like communication systems that are by nature nondeter-
ministic. We will treat nondeterminism at length in Chapter 8.

There are five control statements: sequence, selection, repetition, jump,
and unless; the first four are presented here, while unless is described in
Section 9.4.

The semicolon is the separator between statements that are executed in se-
quence. Semicolons are used as separators in the Pascal language, but most
readers are probably more familiar with their use as terminators of state-
ments in C-like languages. Fewer semicolons are needed when they are used
as separators, so the code looks cleaner. Don’t worry if you use an unneces-
sary semicolon, as SPIN will rarely complain.

Terminology: When a processor executes a program, a register called a lo-
cation counter maintains the address of the next instruction that can be exe-
cuted.5 An address of an instruction is called a control point. For example, in
PROMELA the sequence of statements

x = y + 2;

z = x * y;

printf("x = %d, z = %d\n", x, z)

has three control points, one before each statement, and the location counter
of a process can be at any one of them.

1.6 Selection statements

The classic if-statement is based upon sequential checking of expressions
until one evaluates to true, at which point the associated sequence of state-
ments is executed. The sequential nature can be seen from the use of the
keyword else in languages like JAVA or C:

5 Other terms for location counter are program counter (pc) and instruction pointer (ip).

1.6 Selection statements 11

if (expression-1) {

statement-1-1; statement-1-2; statement-1-3;

}

else if (expression-2) {

statement-2-1;

}

else {

statement-3-1; statement-3-2;

}

In SPIN there is no semantic meaning to the order of the alternatives; the
semantics of the statement merely says that if the expression of an alterna-
tive is true, the sequence of statements that follows it can be executed. The
program in Listing 1.4 contains an if-statement that checks the discriminant
of a quadratic equation; the three expressions are mutually exclusive and ex-
haustive, so that exactly one of them will be true whenever the statement
is executed. The effect of such a statement is the same as that of a familiar
if-statement.

Listing 1.4. Discriminant of a quadratic equation

1 active proctype P() {

2 int a = 1, b = -4, c = 4;

3 int disc;

4 disc = b * b - 4 * a * c;

5 if
6 :: disc < 0 ->

7 printf("disc = %d: no real roots\n", disc)

8 :: disc == 0 ->

9 printf("disc = %d: duplicate real roots\n", disc)

10 :: disc > 0 ->

11 printf("disc = %d: two real roots\n", disc)

12 fi
13 }

An if-statement starts with the reserved word if and ends with the re-
served word fi (if spelled backward). In between are one or more alterna-
tives, each consisting of a double colon, a statement called a guard, an arrow,

12 1 Sequential Programming in PROMELA

and a sequence of statements.6 (Note that no semicolon is required before a
double colon or the fi because the semicolon is a separator, not a terminator.)

The execution of an if-statement begins with the evaluation of the guards;
if at least one evaluates to true, the sequence of statements following the ar-
row corresponding to one of the true guards is executed. When those state-
ments have been executed, the if-statement terminates.

Listing 1.5 shows a program for computing the number of days in a
month. Compound boolean expressions are used for each guard. The exam-
ple also shows the else guard whose meaning is: if and only if all the other
guards evaluate to false, the statements following the else will be executed.

Listing 1.5. Number of days in a month

1 active proctype P() {

2 byte days;

3 byte month = 2;

4 int year = 2000;

5 if
6 :: month == 1 || month == 3 || month == 5 ||

7 month == 7 || month == 8 || month == 10 ||

8 month == 12 ->

9 days = 31

10 :: month == 4 || month == 6 || month == 9 ||

11 month == 11 ->

12 days = 30

13 :: month == 2 && year % 4 == 0 && /* Leap year */

14 (year % 100 != 0 || year % 400 == 0) ->

15 days = 29

16 :: else ->

17 days = 28

18 fi;
19 printf("month = %d, year = %d, days = %d\n",

20 month, year, days)

21 }

6 In SMC an alternative is called an option sequence, but I prefer the former term.

1.6 Selection statements 13

Warning

The else guard is not the same as a guard consisting of the con-
stant true. The latter can always be selected even if there are other
guards that evaluate to true, while the former is only selected if
all other guards evaluate to false.

The next example shows how nondeterminism works. When computing
the maximum of two values, it does not matter which is chosen if the two val-
ues are equal (Listing 1.6). If two or more guards evaluate to true, the state-
ments associated with either may be executed. In the example, we have used
an additional variable, branch, to record which alternative is taken. Run the
program a few times and you will see that both values can be printed. This
demonstrates the concept of random simulation: Whenever a nondetermin-
istic choice exists, SPIN randomly chooses one of them.

Finally, it is possible that all alternatives could be false. In that case the
process blocks until some guard evaluates to true, which can only happen in
a concurrent program with more than one process (Chapter 3).

The sequence of statements following a guard can be empty, in which
case control leaves the if-statement after evaluating the guard. If you are
bothered by the empty sequence, you can use skip, which is syntactic sugar
for a statement (actually, an expression) that always evaluates to true like
true or (1).

Listing 1.6. Maximum of two values

1 active proctype P() {

2 int a = 5, b = 5;

3 int max;

4 int branch;

5 if
6 :: a >= b -> max = a; branch = 1

7 :: b >= a -> max = b; branch = 2

8 fi;
9 printf("The maximum of %d and %d = %d by branch %d\n",

10 a, b, max, branch)

11 }

14 1 Sequential Programming in PROMELA

Advanced: Arrows as separators
The arrow symbol is syntactic sugar for a semicolon. Guards are sim-
ply PROMELA statements with no special syntax, so, for example, the
if-statement in Listing 1.4 is equivalent to one written as:

if
:: disc < 0 ; printf(...)
:: disc == 0 ; printf(...)
:: disc > 0 ; printf(...)
fi

The arrow syntax is preferred because it emphasizes the role of the
guard in deciding which alternative to execute.

1.6.1 Conditional expressions∗

A conditional expression enables you to obtain a value that depends on the
result of evaluating a boolean expression:7

max = (a > b -> a : b)

The variable max is assigned the value of a if a > b; otherwise, it is assigned
the value of b. The syntax is different from that in C-like languages: An arrow
is used instead of a question mark to separate the condition from the two
expressions.

Warning

A conditional expression must be contained within parentheses.
It is a syntax error to write:

max = a > b -> a : b

In Listing 1.5, we could slightly simplify the computation of the number
of days in February by using a conditional expression:

:: month == 2 && year % 4 == 0 ->

days = (year % 100 != 0 || year % 400 == 0 ->

29 : 28)

Note the difference between the two arrows: the first arrow separates the
guard from the assignment statement, while the second arrow is used in the
conditional expression.

The semantics of conditional expressions is different from that of if-
statements. An assignment statement like

7 In the man pages a conditional expression is called cond_expr.

1.7 Repetitive statements 15

max = (a > b -> a : b)

is an atomic statement, while the the if-statement

if
:: a > b -> max = a

:: else -> max = b

fi

is not, and interleaving is possible between the guard and the following as-
signment statement.

1.7 Repetitive statements

There is one repetitive statement in PROMELA, the do-statement. The pro-
gram in Listing 1.7 computes the greatest common denominator (GCD) of
two values of type int by repeated subtraction of the smaller from the larger.
The syntax of the do-statement is the same as that of the if-statement, except
that the keywords are do and od. The semantics is similar, consisting of the
evaluation of the guards, followed by the execution of the sequence of state-
ments following one of the true guards. For a do-statement, completion of
the sequence of statements causes the execution to return to the beginning of
the do-statement and the evaluation of the guards is begun again.

Listing 1.7. Greatest common denominator

1 active proctype P() {

2 int x = 15, y = 20;

3 int a = x, b = y;

4 do
5 :: a > b -> a = a - b

6 :: b > a -> b = b - a

7 :: a == b -> break
8 od;
9 printf("The GCD of %d and %d = %d\n", x, y, a)

10 }

Termination of a loop is accomplished by break, which is not a statement
but rather an indication that control passes from the current location to the
statement following the od.

16 1 Sequential Programming in PROMELA

1.7.1 Counting loops

Unfortunately, there are no counting loops in PROMELA similar to the for-
statements of C-like languages. The program in Listing 1.8 shows how to
implement a counting loop. The control variable i is declared and initialized.
One alternative of the do-statement (line 7) checks if the value of i is greater
than the upper limit N, and if so executes a break. Otherwise (else), the body
of the loop is executed and the control variable incremented (lines 8–10).

Listing 1.8. A counting loop

1 #define N 10

2

3 active proctype P() {

4 int sum = 0;

5 byte i = 1;

6 do
7 :: i > N -> break
8 :: else ->

9 sum = sum + i;

10 i++

11 od;
12 printf("The sum of the first %d numbers = %d\n", N, sum)

13 }

Warning

Do not forget the else in a counting loop! It is not an error of
syntax to omit the else and so no error message will result. SPIN

will nondeterministically choose to execute one of the alterna-
tives whose guard evaluates to true (if any), and the results may
be unexpected.

PROMELA contains a macro facility that can be used to make programs
more readable (Section 6.3.2). Macros can be written to simulate the control
statements of more familiar languages. Personally, I prefer to use PROMELA’s
guarded-commands syntax, except in the case of of counting loops. The pro-
gram in Listing 1.9 shows how to implement the counting loop using a macro

1.8 Jump statements∗ 17

to simulate a for-statement. The for macro takes three parameters: the con-
trol variable, and the lower and upper limits of the loop. The rof macro at
the end of the loop takes the control variable as a parameter. The text of these
macros is contained in a file for.h which must be include’d in the program.
Be sure that this file is in the same directory as your program. (The definition
of these macros is given in Section 6.3.2.)

Listing 1.9. Counting with a for-loop macro

1 #include "for.h"

2 #define N 10

3

4 active proctype P() {

5 int sum = 0;

6 for (i, 1, N)

7 sum = sum + i

8 rof (i);

9 printf("The sum of the first %d numbers = %d\n", N, sum)

10 }

Warning

This macro declares the loop variable i, but does not create a new
scope as in JAVA. If you use it more than once with the same vari-
able, you will get an error message that the variable is multiply
declared, although no harm is done and you can ignore the mes-
sage. Alternatively, modify the macro to remove the declaration
and declare the variable yourself.

1.8 Jump statements∗

PROMELA contains a goto-statement that causes control to jump to a label,
which is an identifier followed by a (single) colon. goto can be used instead
of break to exit a loop:

18 1 Sequential Programming in PROMELA

do
:: i > N -> goto exitloop

:: else -> ...

od;
exitloop:

printf(...);

though normally the break is preferred since it is more structured and
doesn’t require a label. See Section 8.1 for a reasonable use of the goto-
statement.

Warning

There is no control point at the beginning of an alternative in an
if- or do-statement, so it is a syntax error to place a label in front
of a guard. Instead, there is a “joint” control point for all alterna-
tives at the beginning of the statement.

Here is an example showing how a label must be attached to the entire do-
statement and not to a single alternative:

start:

do
:: wantP ->

if
:: wantQ -> goto start

:: else -> skip
fi

:: else ->

...

od

Warning

Labels in PROMELA are not used only as targets of jump state-
ments; they are also used in correctness specifications. See Sec-
tions 4.7.2 and 10.4.

2

Verification of Sequential Programs

Although SPIN is designed for verifying models of concurrent and distrib-
uted systems, we will introduce verification within the elementary context
of sequential programs. This chapter shows how to express correctness spec-
ifications using assertions and describes the procedure for carrying out a ver-
ification in SPIN.

2.1 Assertions

A state of a program is a set of values of its variables and location coun-
ters. For example, a state of the program in Listing 1.1 is a triple such as
(123, 321, 8), where the first element is the value of the variable value,
the second is the value of reversed, and the third shows that the location
counter is before the printf statement in line 8.

A computation of a program is a sequence of states beginning with an
initial state and continuing with the states that occur as each statement is
executed. There is only one computation for the program in Listing 1.1:

(123, 0, 4) -> (123, 321, 8) -> (123, 321, 9)

The state space of a program is the set of states that can possibly occur
during a computation.1 In model checking the state space of a program is
generated in order to search for a counterexample – if one exists – to the
correctness specifications. This section shows how to use assertions to express
correctness specifications.

Assertions can be placed between any two statements of a program and
the model checker will evaluate the assertions as part of its search of the state
space. If, during the search, it finds a computation leading to a false assertion,

1 Section 4.3 elaborates on the meaning of possibly in this context.

20 2 Verification of Sequential Programs

either the program is incorrect, or the assertion does not properly express a
correctness property that holds for the program.

Listing 2.1 shows a program for integer division that works by repeatedly
subtracting the divisor from the dividend until what remains is less than the
divisor. We have added assertions to the program. The first assertion (line 6)
is the precondition, an assertion that specifies what must be true in the initial
state. Here the precondition states that the dividend is nonnegative and that
the divisor is positive. The postcondition (lines 20–21) specifies what must be
true in any final state of the program. The first line claims that the remain-
der is nonnegative and less than the divisor, and the second claims that the
expected relation holds among the four quantities.

Listing 2.1. Integer division

1 active proctype P() {

2 int dividend = 15;

3 int divisor = 4;

4 int quotient, remainder;

5

6 assert (dividend >= 0 && divisor > 0);

7

8 quotient = 0;

9 remainder = dividend;

10 do
11 :: remainder >= divisor ->

12 quotient++;

13 remainder = remainder - divisor

14 :: else ->

15 break
16 od;
17 printf("%d divided by %d = %d, remainder = %d\n",

18 dividend, divisor, quotient, remainder);

19

20 assert (0 <= remainder && remainder < divisor);

21 assert (dividend == quotient * divisor + remainder)

22 }

2.1 Assertions 21

Assertions are statements consisting of the keyword assert followed by
an expression. When an assert statement is executed during a simulation,
the expression is evaluated. If it is true, execution proceeds normally to the
next statement; if it is false, the program terminates with an error message.

Run a random simulation for this program; it will terminate normally
with no error messages, printing:

15 divided by 4 = 3, remainder = 3

Now, change the initial value of the variable dividend to 16 (line 2), change
the guard remainder >= divisor to remainder > divisor (line 11), and re-
run the simulation. The assertion in line 20 will evaluate to false and the
program will terminate with the error message:

spin: line 20 "divide-error.pml", Error: assertion violated

spin: text of failed assertion:

assert(((0<=remainder)&&(remainder<divisor)))

The error message identifies the assertion that evaluated to false. Using the
data displayed in JSPIN or running SPIN from the command line with the
argument -l will quickly show that the assertion is evaluated when both
remainder and divisor equal 4, so that remainder < divisor is false.

Listing 2.2 shows another program for integer division. In addition to the
precondition and postcondition, we have added an assertion within the loop
(lines 11–12); this assertion is evaluated each time the first alternative of the
do-statement (lines 9–21) is executed. An assertion within a loop is called an
invariant of the loop because it must remain true as long as the loop body
continues to be executed.

Run a verification (as described in the next section) and show that the
program is correct.

Advanced: Preconditions in Promela models
Preconditions have little meaning when models are verified in SPIN.
They are intended to specify conditions on the input to a program,
but PROMELA models rarely, if ever, have input. Instead, initial val-
ues are given that trivially satisfy the precondition, as shown in the
program in Listing 2.1. In a real system any input to the system will
be received in a register or memory cell of finite size, so it can mod-
eled by PROMELA statements that nondeterministically choose val-
ues from a limited range (Section 4.6). Postconditions are more mean-
ingful – for models that are intended to terminate – because there
may be many different computations that can terminate, and it makes
sense to specify properties of final states.

22 2 Verification of Sequential Programs

Listing 2.2. Another program for integer division

1 active proctype P() {

2 int dividend = 15, divisor = 4;

3 int quotient = 0, remainder = 0;

4 int n = dividend;

5

6 assert (dividend >= 0 && divisor > 0);

7

8 do
9 :: n != 0 ->

10

11 assert (dividend == quotient * divisor + remainder + n);

12 assert (0 <= remainder && remainder < divisor);

13

14 if
15 :: remainder + 1 == divisor ->

16 quotient++;

17 remainder = 0

18 :: else ->

19 remainder++

20 fi;
21 n--

22 :: else ->

23 break
24 od;
25 printf("%d divided by %d = %d, remainder = %d\n",

26 dividend, divisor, quotient, remainder);

27

28 assert (0 <= remainder && remainder < divisor);

29 assert (dividend == quotient * divisor + remainder)

30 }

2.2 Verifying a program in SPIN 23

Advanced: Deductive verification
An alternative approach to verification is deduction. A formal seman-
tics is defined for program constructs and then a formal logic with
axioms and inference rules is used to deduce that a program satis-
fies correctness specifications, expressed, for example, as assertions.
The advantage of deductive verification is that it is not limited by the
size of the state space because the deduction is done on symbolic for-
mulas; the disadvantage is that it is less amenable to automation and
requires mathematical ingenuity.
A deductive verification of the program in Listing 2.2 is given in Sec-
tion B.4 of PCDP; it was partially automated using the verification
capabilities of the SPARK system [3].
For an overview of deductive verification, see Chapter 9 of MLCS; an
advanced textbook is [1].

2.2 Verifying a program in SPIN

Consider the program in Listing 2.3 that has an error in the second alternative
(line 5). When a equals b a random simulation is just as likely to take the
first alternative of the if-statement as the second. In fact, even if we run
the simulation repeatedly, it is possible – although unlikely – that the same
alternative will always be taken. In other words, no amount of simulation
can ever verify that the postcondition is true, because it may become true if
one alternative is taken, while it is falsified in the other alternative.

Listing 2.3. Maximum with an error

1 active proctype P() {

2 int a = 5, b = 5, max;

3 if
4 :: a >= b -> max = a;

5 :: b >= a -> max = b+1;

6 fi;
7 assert (a >= b -> max == a : max == b)

8 }

The only way to verify that a program is correct is to systematically check
that the correctness specifications hold in all possible computations, and that is
what model checkers like SPIN are designed to do.

24 2 Verification of Sequential Programs

In a deterministic program (with no input), there is only one possible
computation, so a single random simulation will suffice to demonstrate the
correctness of a program. For a concurrent or nondeterministic program,
checking all possible computations involves executing the program and
backtracking over each choice of the next statement to execute. One of the
ways that SPIN achieves efficiency is by generating an optimized program
called a verifier for each PROMELA model. Verification in SPIN is a three-step
process (Figure 2.1):

• Generate the verifier from the PROMELA source code.
The verifier is a program written in C.

• Compile the verifier using a C compiler.
• Execute the verifier. The result of the execution of the verifier is a report

that all computations are correct or else that some computation contains
an error. (The Trail shown in the figure is explained in the next section.)

Fortunately, there is no need to examine the C source code of the verifier; you
simply perform these three steps within a script, or use JSPIN, which invokes
SPIN, the C compiler and the compiled verifier.

Fig. 2.1. The architecture of SPIN

Promela
program

Generation Verifier
(C)-

Compilation Verifier
(executable)-

Trail Report

?

Execution

?

jSpin

Select Verify. The commands that are executed are listed in the mes-
sage pane. The report of the verifier is displayed in the right pane.

2.2 Verifying a program in SPIN 25

Command line

Run SPIN with the argument -a to generate the verifier source code:

spin -a max.pml

Check your directory; you should find files pan.* including pan.c,
which contains the source code of the main program. (The file name
pan is historical and is derived from protocol analyzer.) The next step
is to compile this file; for the gcc compiler the command is:

gcc -o pan pan.c

Finally, run the verifier:

pan

You may need to enter this command as ./pan or .\pan.

Verify the program in Listing 1.6 for the maximum of two numbers; you
should get errors = 0. (For now, you can ignore the rest of the output.)

Next, verify the program in Listing 2.3 that contains an error; the report
will be:

pan: assertion violated

(((a>=b)) ? ((max==a)) : ((max==b))) (at depth 0)

pan: wrote max1.pml.trail

(Spin Version 4.2.8 -- 6 January 2007)

Warning: Search not completed

...

State-vector 24 byte, depth reached 2, errors: 1

...

SPIN does not bother to search the entire state space; instead, it stops as soon
as one assertion is violated because the existence of one counterexample is
usually sufficient to locate an error in the program or the correctness specifi-
cations.

Advanced: Continuing past the first error

The argument -e to pan causes trails for all errors to be created.
The argument -cN causes the verifier to stop at the Nth error rather
than the first, while the argument -c0 requests the verifier to ignore
all errors and not to generate a trail file.

26 2 Verification of Sequential Programs

2.2.1 Guided simulation

You may hope that your first attempt at verifying a model will succeed;
however, this is unrealistically optimistic! Almost invariably it takes a long
time to understand the interactions among components of the model, and
between the model and its correctness specifications, in order to achieve a
successful verification. Thus, a primary task of a model checker is to assist
the systems engineer in understanding why a verification has failed.

SPIN supports the analysis of failed verifications by maintaining internal
data structures during its search of the state space; these are used to recon-
struct a computation that leads to an error. The data required for reconstruct-
ing a computation are written into a file called a trail. (The name of the file
is the same as that of the PROMELA source code file with the additional ex-
tension .trail.) The trail file is not intended to be read; rather, it is used to
reconstruct a computation by running SPIN in guided simulation mode.

jSpin

After running a verification that has reported errors, select Trail .

Command line

After running a verification that has reported errors, run SPIN again
with the -t argument:

spin -t max.pml

An examination of the guided simulation for the program in Listing 2.3
will show that the bad computation actually occurs when the alternative
with the mistake (line 5) is executed:

Starting P with pid 0

0: proc - (:root:) creates proc 0 (P)

0 P 3 b>=a

0 P 5 max = (b+1)

As a check of your understanding of assertions, write the postcondition
for the program in Listing 1.7 that computes the greatest common denomi-
nator of two integer numbers; verify that the program is correct.

2.2.2 Displaying a computation

When examining a computation produced by a random or guided simula-
tion, we need more than the output that results from the print statements.

2.2 Verifying a program in SPIN 27

We need to examine the sequence of statements executed, as well as the state
of the computation – the values of the variables and the location counters –
after executing each statement. SPIN can print any subset of the following
data:

• The statements executed by the processes;
• The values of the global variables;
• The values of the local variables;
• Send instructions executed on a channel (see Chapter 7);
• Receive instructions executed on a channel (see Chapter 7).

To select which data to display:

jSpin

Select Options / Common and select the data you want displayed. It
is simplest to check all of them (Set all).
The states are displayed in tabular form in the right pane with a sep-
arate entry for each state. An entry contains the statement executed,
the process it came from, and the values of the variables in the pro-
gram.
JSPIN has many options for customizing the display of data during a
simulation. You can interactively choose to exclude some variables
or statements from the display by entering their identifiers in the
text areas that pop up after selecting Output / Exclude variables

or Output / Exclude statements.
The width of the fields used for displaying the values of the variables
can be specified by selecting Output / Variable width.
To maximize the right pane, select Output / Maximize (alt-M).

Command line

The following arguments cause SPIN to display the data described
above during a simulation: -p (statements), -g (globals), -l (locals),
-s (send), -r (receive).
Each item of data is displayed on a separate line. You can redirect the
output into a file and then examine the data using an editor.

3

Concurrency

Many computers are used in embedded systems, which are composed of hard-
ware, software, sensors, controllers and displays, and which are intended
to be run indefinitely and without continuous supervision. One only has
to think of airplanes, medical monitors, and cell phone networks to appre-
ciate the complexity of embedded systems. Invariably, these systems con-
tain several processes that must sample sensors and perform computations at
roughly the same time; for example, a medical monitor samples heart rate,
blood pressure, and temperature, and determines if they are within a prede-
termined range. Programming for multiprocess systems is called concurrent
programming.

Frequently, embedded systems contain several processors; microproces-
sors have become so inexpensive that it is feasible to devote a separate
processor to each subsystem. Furthermore, many systems like cell phone net-
works are by nature geographically dispersed, relying on communications
networks for passing data between processors. Programming for such sys-
tems is called distributed programming.

SPIN supports modeling of both concurrent and distributed systems. This
chapter is the first of several on writing and verifying concurrent programs;
in Chapter 7 we discuss the use of channels to model distributed systems.

3.1 Interleaving

Consider the program in Listing 3.1 with two processes, P and Q. A com-
putation of the program can be displayed in a table with one line for each
state that forms the computation. The top line is the initial state. The entry
for a state shows the values of the variables and the statement that will be

30 3 Concurrency

Listing 3.1. Interleaving statements

1 byte n = 0;

2

3 active proctype P() {

4 n = 1;

5 printf("Process P, n = %d\n", n)

6 }

7

8 active proctype Q() {

9 n = 2;

10 printf("Process Q, n = %d\n", n)

11 }

executed next, together with the process in which the statement is declared.
Here is the table for one computation of the program in Listing 3.1:1

Process Statement n Output
P n = 1 0
P printf(P) 1
Q n = 2 1 P, n = 1

Q printf(Q) 2
Q, n = 2

In the initial state, the first statement executed is n = 1 from process P and
that leads to the next state in which the value of n is 1; process P prints this
value. Then process Q assigns the value 2 to n and prints the value. The pro-
gram terminates in a state with the value 2 in the global variable n.

However, this is not the only possible computation of the program. There
are six possible computations of the program:

1 2 3 4 5 6

n = 1 n = 1 n = 1 n = 2 n = 2 n = 2

printf(P) n = 2 n = 2 printf(Q) n = 1 n = 1

n = 2 printf(P) printf(Q) n = 1 printf(Q) printf(P)

printf(Q) printf(Q) printf(P) printf(P) printf(P) printf(Q)

1 To save space, the printf statements have been abbreviated.

3.1 Interleaving 31

These computations correspond to the following outputs:

Process P, n = 1 Process P, n = 2 Process Q, n = 2

Process Q, n = 2 Process Q, n = 2 Process P, n = 1

Process Q, n = 2 Process Q, n = 1 Process P, n = 1

Process P, n = 1 Process P, n = 1 Process Q, n = 1

We say that the computations of a program are obtained by arbitrar-
ily interleaving of the statements of the processes. If each process pi were
run by itself, a computation of the process would be a sequence of states
(s0

i , s1
i , s2

i , . . .), where state sj+1
i follows state sj

i if and only if it is obtained by

executing the statement at the location counter of pi in sj
i .

Consider now a computation obtained by running all processes concur-
rently. It is a sequence of states (s0, s1, s2, . . .), where sj+1 follows state sj if
and only if it is obtained by executing the statement at the location counter
of some process in sj. The word “interleaving” is intended to represent this
image of “selecting” a statement from the possible computations of the indi-
vidual processes and “merging” then into a computation of all the processes
of the system.

For the program in Listing 3.1, a state is a triple consisting of the value of
n and the location counters of processes P and Q. The computation obtained
by executing the processes by themselves can be represented as

(0, 4, -) -> (1, 5, -) -> (1, 6, -)

for process P, and

(0, -, 9) -> (2, -, 10) -> (2, -, 11)

for process Q. The third computation above is obtained by interleaving the
two separate computations:

(0, 4, 9) -> “select” from P
(1, 5, 9) -> “select” from Q
(2, 5, 10) -> “select” from Q
(2, 5, 11) -> “select” from P
(2, 6, 11)

3.1.1 Displaying a computation

When SPIN simulates a program it creates one computation by interleaving
the statements of all the processes. SPIN writes a description of the compu-
tation on standard output; JSPIN formats this description to make it easier to
understand.

32 3 Concurrency

jSpin

The output of a simulation is displayed in the right pane; here is the
output for computation 4 from page 30:

Process Q, n = 2

Process P, n = 1

2 processes created

A tabular format of the states of the computation can be displayed.
Select Options / Common / Set all / OK (see Section 2.2.2). Here
is the table for computation 1:

0 P 4 n = 1

Process Statement n

0 P 5 printf(’Proces 1

1 Q 9 n = 2 1

1 Q 10 printf(’Proces 2

The first columns contain the process ID (number) and name; this is
followed by the line number and source code of the statement exe-
cuted (truncated if necessary), and then the values of the variables.

Command line

When SPIN writes the output of a concurrent program, it automatic
indents printf statements so that it is easy to see which statement
comes from which process. The output for computation 4 (page 30)
is:

Process Q, n = 2

Process P, n = 1

2 processes created

and the output from computation 6 is:

Process P, n = 1

Process Q, n = 1

2 processes created

The argument -T turns off the automatic indentation.
Section 2.2.2 listed the arguments that enable the display of the state-
ments that are executed and the values of the variables. Here is the
output (edited to fit on the page) that is obtained by running with the
arguments -p -g. There is a line for each statement executed and a
line that displays the value of the variable n when it changes.

3.2 Atomicity 33

Starting P with pid 0

0: proc - (:root:) creates proc 0 (P)

Starting Q with pid 1

0: proc - (:root:) creates proc 1 (Q)

1: proc 1 (Q) line 9 (state 1) [n = 2]

n = 2

Process Q, n = 2

2: proc 1 (Q) line 10 (state 2) [printf(Q)]

2: proc 1 (Q) terminates

3: proc 0 (P) line 4 (state 1) [n = 1]

n = 1

Process P, n = 1

4: proc 0 (P) line 5 (state 2) [printf(Q)]

4: proc 0 (P) terminates

2 processes created

3.2 Atomicity

Statements in PROMELA are atomic. At each step, the statement pointed to by
the location counter of some (arbitrary) process is executed in its entirety. So,
for example, in Listing 3.1 it is not possible for the assignment statements to
overlap in a way that causes n to receives some value other than 1 or 2.

Warning

Expressions in PROMELA are statements.

In an if- or do-statement it is possible for interleaving to occur
between the evaluation of the expression (statement) that is the
guard and the execution of the statement after the guard.

In the following example, assume that a is a global variable; you cannot
infer that division by zero is impossible:

if
:: a != 0 ->

c = b / a

:: else ->

c = b

fi

34 3 Concurrency

Between the evaluation of the guard a != 0 and the execution of the assign-
ment statement c = b / a, some other process might have assigned zero to
a. In Section 4.4 we will discuss ways of executing the statements of a se-
quence atomically, and in Section 3.4 we show how to model hardware at a
level lower than a complete expression.

3.3 Interactive simulation

When there are two or more nontrivial processes in a PROMELA program,
the number of computations becomes extremely large because every pos-
sible interleaving gives rise to a computation. Random simulation tells us
almost nothing about the program, except that it works for a few compu-
tations. Therefore, verification is essential when one deals with concurrent
programs. Verifications are quite likely to find counterexamples and these
computations can be displayed as described in Section 2.2.1. However, it is
also useful to examine a computation step by step and to manually “select”
the next instruction to be executed; in other words, to create a specific inter-
leaving.

With interactive simulation a specific computation can be constructed. Be-
fore each step that has a choice point – either because of nondeterminism
within a single process or when a choice of the next statement to execute
can be made from several processes – you are presented with the various
choices and can interactively choose which one to execute. To run an interac-
tive simulation:

jSpin

Select Interactive. The set of choices at each step is displayed in a
popup window:

Click on the one you wish to execute. The selections are prefixed by
the process ID and name, as the same source statement may appear in
several processes. At any time you can close the window to terminate
the simulation.
To work with the keyboard: Tab moves between the choices and
Space selects the currently highlighted choice. Esc terminates the
simulation.

3.4 Interference between processes 35

Command line
Execute SPIN with the argument -i. Before each step you will be pre-
sented with a set of choices:

Select a statement

choice 1: proc 1 (Q) line 9 (state 1) [n = 2]

choice 2: proc 0 (P) line 4 (state 1) [n = 1]

Select [1-2]:

Enter the number of the choice you wish to execute or q to terminate
the interactive simulation.

Warning

The numbering may not start at one.

Be sure to enter the choice number and not the line number.

Some of the choices may not be executable. For example, if the value of x is 1
and the statement to be executed is a guard x > 1, the choice will be marked
as unexecutable and you cannot select it.

3.4 Interference between processes

The challenge of writing concurrent programs comes not from interleaving
as such, but rather from interference between processes that can cause truly
bizarre errors. Consider the program in Listing 3.2 that increments the global
variable n in each of two processes. Its value is copied into the local variables
temp when the add operations are performed, and the result is copied back to
the global variable in a separate assignment statement. (This models a CPU
that performs computation in registers as explained in more detail at the end
of this section.) Between the statements of process P on lines 5 and 6 it is
possible to interleave statements from process Q, and similarly for process Q.
Such interleaving would not be possible if the computation were performed
in a single atomic statement n = n + 1.

Clearly, we expect that incrementing the variable n twice will cause its
final value to be 2, whatever the order in which the increment instructions
are executed. Surprisingly, this is not true, as can be seen by the computation
in Figure 3.1, in which the final value is 1.2 This results from interference

2 Since the variable temp is used in both processes, we prefix the variable name by
its process name to resolve the ambiguity.

36 3 Concurrency

Listing 3.2. Interference between two processes

1 byte n = 0;

2

3 active proctype P() {

4 byte temp;

5 temp = n + 1;

6 n = temp;

7 printf("Process P, n = %d\n", n)

8 }

9

10 active proctype Q() {

11 byte temp;

12 temp = n + 1;

13 n = temp;

14 printf("Process Q, n = %d\n", n)

15 }

between the two processes. Both copy the same initial value, and the updated
value from one process is overwritten by the updated value from the second
process. Run a random simulation of the program several times until you get
a computation in which 1 is printed twice. To ensure that you understand
how the computation is obtained, create it by interactive simulation.

Fig. 3.1. Perfect interleaving

Process Statement n P:temp Q:temp Output
P temp = n + 1 0 0 0
Q temp = n + 1 0 1 0
P n = temp 0 1 1
Q n = temp 1 1 1
P printf(P) 1 1 1
Q printf(Q) 1 1 1 P, n = 1

Q, n = 1

3.5 Sets of processes 37

Advanced: Modeling a CPU with registers

This program is a simple model of a CPU that performs computation
in registers:

load R1, n

add R1, #1

store R1, n

In the PROMELA program the variable n represents a memory cell
and the variables temp represent the register. In a multiprocess sys-
tem each process has its own copy of the contents of the registers,
which is loaded into the CPU registers and saved in memory during
a context switch. We have modeled the computation in two state-
ments rather than three, since the add operation is not visible outside
the process, so there is no need to model it separately and it can be
combined with either the load or the store operation. Alternatively,
we could have used three statements and let the SPIN optimization
called partial order reduction reduce the state space automatically
(Section 10.2).

3.5 Sets of processes

In Listing 3.2 the two processes are identical except for their names. Instead
of writing them separately, a set of identical processes can be declared (List-
ing 3.3). The number in brackets following the keyword active (line 3) indi-
cates the number of processes to instantiate.

Listing 3.3. Instantiating two processes

1 byte n = 0;

2

3 active [2] proctype P() {

4 byte temp;

5 temp = n + 1;

6 n = temp;

7 printf("Process P%d, n = %d\n", _pid, n)

8 }

38 3 Concurrency

How are we to distinguish between the processes? One way is to use
the predefined variable _pid, which is of a separate type pid but actually
similar to byte. Each time that a process is instantiated, it is assigned a process
identifier starting with zero. (The maximum number of processes in a SPIN

model is 255.) In the program in Listing 3.3, the value of _pid is printed so
that we can distinguish between the two processes on output (line 7).

An alternate way of instantiating processes from a proctype is to use the
run operator (Listing 3.4). The keyword run is followed by the name of a
process type (lines 13–14), which is indicated by proctype without the key-
word active (line 3); this causes a process of that type to be instantiated. run
is used to supply initial values to a process: the formal parameters are de-
clared in the process type and are local variables initialized with the values
of the actual parameters.

Processes in PROMELA are usually instantiated in a process called init,
which – if it exists – is always the first process activated and thus the value
of _pid in this process is 0. In Listing 3.4, the processes are instantiated in an
init process where they are passed an explicit identifier id, as well as an ad-
ditional value incr that is used in the assignment statements. The initializa-
tion of the global variable has also been moved to the init process (line 11),
though this would normally be done only for non-trivial initialization code
such as the nondeterministic selection of a value (Section 4.6).

By convention, run statements are enclosed in an atomic sequence to en-
sure that all processes are instantiated before any of them begins execution
(lines 12–15). The meaning of atomic will be explained in the next section.

Warning

The formal parameters of a proctype are separated with semi-
colons, not commas.

Advanced: The run operator
run is an operator, so run P() is an expression, not a statement, and
it returns a value: the process ID of the process that is instantiated,
or zero if the maximum number of processes (255) have already been
instantiated.

3.6 Interference revisited

The use of init enables us to write a fascinating program for demonstrat-
ing interference. The program in Listing 3.5 contains two processes, each of
which increments the global variable n ten times.

3.6 Interference revisited 39

Listing 3.4. The init process

1 byte n;

2

3 proctype P(byte id; byte incr) {

4 byte temp;

5 temp = n + incr;

6 n = temp;

7 printf("Process P%d, n = %d\n", id, n)

8 }

9

10 init {

11 n = 0;

12 atomic {

13 run P(1, 10);

14 run P(2, 15)

15 }

16 }

We wish to print the final value of n after the two processes have com-
pleted executing their statements, so we need some way to force process
init to wait for the completion of the other two. This can be done by us-
ing the predefined variable _nr_pr whose value is the number of processes
currently active. The statement in line 17 consisting just of the expression

(_nr_pr == 1)

causes process init to be blocked until the expression evaluates to true,
which occurs when the number of active processes is equal to 1, namely,
the process init itself. (The use of expressions for blocking execution will be
discussed in Section 4.2.)

Consider now two computations. In the first the computation is per-
formed without interference: One process executes all its statements in se-
quence, followed by all the statements of the second process. It is easy to see
that the final value of n is 20. The second computation is performed by “per-
fect” interleaving: The computation is created by alternately “selecting” one
statement from each process, generalizing the computation shown in Fig-
ure 3.1. It is not difficult to see that each pair of updates of the variable n

increments its value by 1, and the final value is 10.
Intuitively, it seems as if “perfect” interleaving represents the maximum

“amount of interference” possible, and for many years I taught that the final

40 3 Concurrency

Listing 3.5. Counting with interference

1 #include "for.h"

2 byte n = 0;

3

4 proctype P() {

5 byte temp;

6 for (i, 1, 10)

7 temp = n + 1;

8 n = temp

9 rof (i)

10 }

11

12 init {

13 atomic {

14 run P();

15 run P()

16 }

17 (_nr_pr == 1) ->

18 printf("The value is %d\n", n)

19 }

value of n must be between 10 and 20. It came somewhat of a shock when I
discovered that the final value can be as low as 2 (see [6])! Try to find the com-
putation yourself; if you can’t, we will show in Section 3.8 how verification
can be used to discover it.

3.7 Deterministic sequences of statements∗

As noted in Section 3.2, each statement of PROMELA (including expressions)
is executed atomically. Thus, n = n + 1 is executed atomically, so to model a
CPU with an accumulator we wrote a program with local variables and two
assignment statements (Listing 3.2).

To model atomic statements that are more complex than a single assign-
ment statement, we can specify that a sequence of statements is to be exe-
cuted atomically. There are two ways of creating atomic sequences of state-
ments: d_step (short for deterministic step) and atomic. Listing 3.6 shows
the use of d_step to ensure that the two statements in the processes in
Listing 3.2 are executed atomically (lines 5–8, 14–17), resulting in a pro-

3.7 Deterministic sequences of statements∗ 41

gram that is equivalent to one with the two-statement sequences replaced
by n = n + 1. The following computation shows that executing the program
prints the expected result:

Process Statement n P:temp Q:temp Output
P temp = n + 1; n = temp 0 0 0
Q temp = n + 1; n = temp 1 1 0
P printf("P") 2 1 2
Q printf("Q") 2 1 2 P, n = 2

Q, n = 2

In this example, atomic can be used instead of d_step. The difference be-
tween the two will be explained in Section 4.4.

Listing 3.6. Deterministic step

1 byte n = 0;

2

3 active proctype P() {

4 byte temp;

5 d_step {

6 temp = n + 1;

7 n = temp

8 }

9 printf("Process P, n = %d\n", n)

10 }

11

12 active proctype Q() {

13 byte temp;

14 d_step {

15 temp = n + 1;

16 n = temp

17 }

18 printf("Process Q, n = %d\n", n)

19 }

42 3 Concurrency

There are many synchronization primitives such as test-and-set and ex-
change that are based upon the atomic execution of a sequence of state-
ments. These are explained in Section 3.10 of PCDP, and implementations
in PROMELA are given in the software archive for that book.

3.8 Verification with assertions

Consider again the program in Listing 3.5 that increments a global variable
by 10 in each of two processes. We claimed that there is a computation whose
output is 2. How can we check this? We can run random simulations until it
occurs, and that is how I was first made aware of the existence of such a
computation: A student in a computer lab executed the program again and
again using a concurrency simulator and called me over when the output
was 9, a result totally at odds with my intuition. Eventually, I discovered the
principle behind the computation, as well as the fact that such a computation
can result in an output of 2.

With SPIN the computation can be obtained automatically by adding the
assertion

assert (n > 2)

at the end of the program and running a verification. You can be excused if
this assertion looks weird: We want to prove that the variable n can have the
value 2, but instead we assert that its value is greater than 2. What SPIN does
is to search the state space looking for counterexamples, that is, computations
that are in error. If the assertion given were n >= 2, SPIN would report a
successful verification with no errors because, in fact, the final value of n

really is greater than or equal to 2. By asserting the false formula n > 2, SPIN

will find a computation in which n > 2 false, that is, a computation for which
its negation n <= 2 is true.

Running a verification with SPIN results in the error message:

pan: assertion violated (n>2) (at depth 89)

As described in Section 2.2, a guided simulation can now be run with the trail
in order to examine the computation that caused the assertion to be falsified.
The following computation is taken with very little editing directly from the
JSPIN display; to save space, the program was run with an upper limit of 5
for the loop:

3.8 Verification with assertions 43

Process Statement P(1):temp P(2):temp n

2 P 7 temp = n

1 P 7 temp = n 0

2 P 8 n = (temp+1) 0 0

2 P 7 temp = n 0 0 1

2 P 8 n = (temp+1) 0 1 1

2 P 7 temp = n 0 1 2

2 P 8 n = (temp+1) 0 2 2

2 P 7 temp = n 0 2 3

2 P 8 n = (temp+1) 0 3 3

1 P 8 n = (temp+1) 0 3 4

2 P 7 temp = n 0 3 1

1 P 7 temp = n 0 1 1

1 P 8 n = (temp+1) 1 1 1

1 P 7 temp = n 1 1 2

1 P 8 n = (temp+1) 2 1 2

1 P 7 temp = n 2 1 3

1 P 8 n = (temp+1) 3 1 3

1 P 7 temp = n 3 1 4

1 P 8 n = (temp+1) 4 1 4

2 P 8 n = (temp+1) 4 1 5

0 :init 16 _nr_pr==1 4 1 2

The value of temp in P2 is reset to 1 and remains 1 so that a final addition
ignores the value 4 already set in n.

jSpin

The computation of a simulation will be displayed in the right pane.
Select Output / Save output to write the contents of the display to
a file which you can edit as necessary. For this display the width of
the variable fields was set to 10 and the loop variables i of the two
processes were excluded from the display, as were the statements
that access i. See Section 2.2.2 for instructions on how to do this.

Command line

The output of a simulation can be redirected to a file:

pan -t count-verif.pml > count-verif.out

44 3 Concurrency

3.9 The critical section problem

This section begins the presentation of the verification of correctness prop-
erties of concurrent systems. To that end we pose the critical section problem,
which is the archetypal problem in concurrent programming. We will not
attempt to give the motivation of this problem, nor a comprehensive set of
solutions, as these can be found in textbooks on concurrency like PCDP. Let
us just state the specification of the problem:

A system consists of two or more concurrently executing processes.
The statements of each process are divided into critical and noncritical
sections that are repeatedly executed one after the other. A process
may halt in its noncritical section, but not in its critical section. Design
an algorithm for ensuring that the following specifications hold:
Mutual exclusion

At most one process is executing its critical section at any time.
Absence of deadlock

It is impossible to reach a state in which some processes are trying
to enter their critical sections, but no process is successful.

Absence of starvation
If any process is trying to execute its critical section, then eventu-
ally that process is successful.

The program in Listing 3.7 shows an attempt at solving the critical section
problem for two processes. Each process executes a nonterminating do-
statement (lines 4–9, 13–18), alternating between the critical and the non-
critical sections which are represented by printf statements. The phrase
“a process tries to execute its critical section” means that the process has
finished executing its noncritical section and its location counter is at the
following statement (lines 6, 15). Note that the possibility of halting in the
noncritical section has not been modeled (see Section 5.9.2).

The variables wantP and wantQ are used to signal that a process is access-
ing its critical section; a process sets its variable to true before the critical
section (lines 6, 15) and back to false afterwards (lines 8, 17). Of course, since
a process never checks the value of the variable associated with the other
process, it is trivial to find a computation in which they are both in their
critical sections, indicated by both location counters pointing to the print
statements representing the critical section (lines 7, 16). Thus the program
in Listing 3.8 is trivially incorrect, but it serves to introduce the structure of a
solution to the problem.

In a sequential program a postcondition must be true when the program
terminates, and, similarly, an invariant must be true whenever the program

3.9 The critical section problem 45

Listing 3.7. Incorrect solution for the critical section problem

1 bool wantP = false, wantQ = false;
2

3 active proctype P() {

4 do
5 :: printf("Noncritical section P\n");

6 wantP = true;
7 printf("Critical section P\n");

8 wantP = false
9 od

10 }

11

12 active proctype Q() {

13 do
14 :: printf("Noncritical section Q\n");

15 wantQ = true;
16 printf("Critical section Q\n");

17 wantQ = false
18 od
19 }

evaluates it. However, in a concurrent program, we generally need correct-
ness specifications that consider the global state of all the processes in the
program. For example, to specify that two processes cannot be in their criti-
cal sections at the same time, the specification must refer to control points in
both processes.

One way of doing this is to introduce a new variable (critical) that is
not part of the algorithm but is only used for verification (Listing 3.8). Such
a variable is called a ghost variable. The variable is incremented before exe-
cuting a critical section (lines 8, 20) and decremented afterwards (lines 11,
23); clearly, if there exists a state in some computation in which both location
counters are at the print statements representing the critical section (lines 9,
21), then in that state the value of critical is greater than one.3

Running a verification uncovers a state in which the value of the variable
critical is 2 when one of the assert statements is executed, indicating that
mutual exclusion has been violated:

3 This property can also be specified and verified without ghost variables as shown
in Section 5.7.

46 3 Concurrency

Listing 3.8. Verifying mutual exclusion

1 bool wantP = false, wantQ = false;
2 byte critical = 0;

3

4 active proctype P() {

5 do
6 :: printf("Noncritical section P\n");

7 wantP = true;
8 critical++;

9 printf("Critical section P\n");

10 assert (critical <= 1);

11 critical--;

12 wantP = false
13 od
14 }

15

16 active proctype Q() {

17 do
18 :: printf("Noncritical section Q\n");

19 wantQ = true;
20 critical++;

21 printf("Critical section Q\n");

22 assert (critical <= 1);

23 critical--;

24 wantQ = false
25 od
26 }

spin: line 23 "cs.pml", Error: assertion violated

spin: text of failed assertion: assert((critical<=1))

#processes: 2

Process Statement critical wantP wantQ

1 Q 2 1 1

0 P 2 1 1

In the next chapter we will explore how synchronization between pro-
cesses can be achieved in order to solve the critical section problem.

4

Synchronization

PROMELA does not have synchronization primitives such as semaphores,
locks, and monitors that you may have encountered. Instead, you model
primitives by building on the concept of the executability of statements. The
architecture of a computer system constrains the design of synchronization
mechanisms: In this chapter, we present synchronization mechanisms ap-
propriate for models of shared memory systems, while in Chapter 7 we will
discuss channels that are used to model synchronization by communication
in distributed systems that lack shared memory.

4.1 Synchronization by blocking

The program in Listing 3.8 that attempted to solve the critical section prob-
lem was trivially incorrect because, while each process set a variable indicat-
ing its intention to enter its critical section, these variables were not read by
the other process. A simple-minded way to try to remedy this difficulty is
to write a loop before the entry to the critical section, checking the value of
the variable associated with the other process (Listing 4.1). This is called busy-
waiting because the loops in lines 7–10 and 20–23 perform no useful compu-
tation; they just evaluate expressions repeatedly until they become true.

While busy-waiting is an acceptable model for some systems – for exam-
ple, for a multiprocessor with a large number of processors that can afford to
have some of them “waste” cycles waiting for an event to occur – normally,
computer systems are based upon blocking a process so that its processor can
be assigned to another process.

Synchronization by blocking will be familiar to anyone with experience in
operating systems that implement multitasking, the sharing of a single proces-
sor among a set of processes. It is multitasking that enables us to perform

48 4 Synchronization

Listing 4.1. Synchronization by busy-waiting

1 bool wantP = false, wantQ = false;
2

3 active proctype P() {

4 do
5 :: printf("Noncritical section P\n");

6 wantP = true;
7 do
8 :: !wantQ -> break
9 :: else -> skip

10 od;
11 printf("Critical section P\n");

12 wantP = false
13 od
14 }

15

16 active proctype Q() {

17 do
18 :: printf("Noncritical section Q\n");

19 wantQ = true;
20 do
21 :: !wantP -> break
22 :: else -> skip
23 od;
24 printf("Critical section Q\n");

25 wantQ = false
26 od
27 }

activities in parallel, like scrolling through one web page while another is
being downloaded. Processes executing concurrently must be synchronized
if they access common resources; for example, only one process may be al-
lowed to update the display at any time. Synchronization in multitasking
systems is implemented by having a process execute an operation that causes
it to become blocked, thus enabling another process to run. Continuing our
example, if one process is assigned permission to use a resource like the dis-
play, then other processes that need the display will block themselves until
the first process releases it. This shows that blocking is frequently conditional.

4.1 Synchronization by blocking 49

In the program in Listing 4.1, we would like process P to block itself until
wantQ becomes false and process Q to block itself until wantP becomes false.

We have already encountered a blocking statement in PROMELA, the if-
statement. Recall (Section 1.6) that an if-statement contains a set of alterna-
tives that start with expressions called guards.1 An alternative is executable
if its guard evaluates to true (or 1, which is the same). The choice of the
alternative to execute is made nondeterministically among the executable
alternatives. If no guards evaluate to true, the if-statement itself is not exe-
cutable. Similarly, in a do-statement, if the guards of all alternatives evaluate
to false, the statement is not executable and the process is blocked.

Let us replace the do-statements that implement busy-waiting in List-
ing 4.1 by do-statements with a single alternative that can block. In process P
replace lines 7–10 by:

do
:: !wantQ -> break
od

and in process Q replace lines 20–23 by:

do
:: !wantP -> break
od

Consider now an attempt to execute the do-statement in process P. The guard
!wantQ will be evaluated: if its value is true (because the value of the vari-
able wantQ is false), the computation will execute the break and exit the do-
statement. If, on the other hand, the guard !wantQ is false, the process is
blocked at the do-statement.

To say that a process is blocked means that in simulation mode SPIN will
not choose the next statement to execute from that process. In verification
mode it means that SPIN will not continue the search for a counterexam-
ple from this state by looking for states that can be reached by executing a
statement from the process. Hopefully, a subsequent execution of statements
from other processes will unblock the blocked process, enabling it to continue
executing in simulation mode, and in verification mode, enabling the veri-
fier to search for states reachable by executing a statement from the process.
If process P blocks because wantQ is true, eventually, process Q will execute
line 25, setting wantQ to false and unblocking process P.

Check this behavior by running an interactive simulation of the program.
Execute statements of the program until a state is reached in which P is

1 Any statement, not just an expression, can be a guard, but expressions alone will
be used in the following discussion.

50 4 Synchronization

blocked because wantQ is true; in this state you will not be allowed to choose
to execute a statement from process P. Now choose to execute statements
from Q until the statement wantQ = false is executed, enabling the execu-
tion of the a statement from P.

4.2 Executability of statements

Warning

The concept presented in this section is likely to be unfamiliar
even to experienced programmers. Please read it carefully!

There is something rather strange about the construct:

do
:: !wantQ -> break
od

Either wantQ is false and the break causes the loop to be left, or it is true and
the process blocks; when it is unblocked the process can leave the loop. In no
case is there any “looping,” so the do-statement is superfluous. In PROMELA

it is possible to block on a simple statement, not just on a compound state-
ment. Lines 7–10 in Listing 4.1 can be replaced by a single statement that is
the expression !wantQ, and similarly, lines 20–23 by !wantP. An expression
statement is executable if and only if it evaluates to true, in this case if the
value of wantQ is false.

Listing 4.2 shows the program for the critical section problem written as it
should be in PROMELA, with expressions alone used for blocking processes.2

Again, we suggest that you run an interactive simulation of the program in
order to experience the phenomenon of blocking on an expression.

The concept of executability holds for every statement in PROMELA. In the
man page for each statement in PROMELA there is a section that specifies the
conditions for the statement to be executable. Assignment statements and
printf statements are always executable, so executability is primarily mean-
ingful for expressions that can evaluate to true or false, including those that
appear as guards in compound statements. The conditions for executability
are also important in the definitions of channel operations (Chapter 7).

2 This is the third attempt at solving the critical section problem in Chapter 3 of PCDP.

4.3 State transition diagrams 51

Listing 4.2. Synchronization with deadlock

1 bool wantP = false, wantQ = false;
2

3 active proctype P() {

4 do
5 :: printf("Noncritical section P\n");

6 wantP = true;
7 !wantQ;

8 printf("Critical section P\n");

9 wantP = false
10 od
11 }

12

13 active proctype Q() {

14 do
15 :: printf("Noncritical section Q\n");

16 wantQ = true;
17 !wantP;

18 printf("Critical section Q\n");

19 wantQ = false
20 od
21 }

4.3 State transition diagrams

Recall (Section 2.1) that a state of a program is a set of values of the variables
and the location counters, and consider a program with two processes p and
q that have sp and sq statements, respectively, and two variables x and y that
range over vx and vy values, respectively. The number of possible states that
can appear in computations of the program is

sp · sq · vx · vy.

For example, the program in Listing 4.3 has 3 · 3 · 2 · 2 = 36 possible states.
However, not every possible state is reachable from the initial state during

a computation of the program. In particular, a solution to the critical sec-
tion problem is correct only if there are possible states that are not reachable,
namely, states where the location counters of both processes are in their crit-
ical sections, thus falsifying the requirement of mutual exclusion.

52 4 Synchronization

Listing 4.3. Abbreviated solution for the critical section problem

1 bool wantP = false, wantQ = false;
2

3 active proctype P() {

4 do :: wantP = true;
5 !wantQ;

6 wantP = false
7 od
8 }

9

10 active proctype Q() {

11 do :: wantQ = true;
12 !wantP;

13 wantQ = false
14 od
15 }

In principle, the set S of reachable states of a program is easily con-
structed:

1. Let S = {s0}, where s0 is the initial state; mark s0 as unexplored.
2. For each unexplored state s ∈ S, let t be a state that results from execut-

ing an executable statement in state s; if t 6∈ S, add t to S and mark it
unexplored. If no such states exist, mark s as explored.

3. Terminate when all states in S are marked explored.

The reachable states of a concurrent program can be visualized as a con-
nected directed graph called a state transition diagram. The nodes of the dia-
gram are the reachable states and an edge exists from state s to state t if and
only if there is a statement whose execution in s leads to t.

Figure 4.1 is the state transition diagram of the program in Listing 4.3.3

Each node is labeled by the location counters for processes P and Q, followed
by the values of the variables wantP and wantQ. To facilitate reading the dia-
gram, the value of a location counter is given together with the source code
at that control point.

The node that represents the initial state is at the top of the figure and the
other nodes and the edges are constructed as described above. Most states
have two outgoing edges because the next statement could be executed either

3 The relation of Listing 4.3 to Listing 4.2 is explained at the end of this section.

4.3 State transition diagrams 53

Fig. 4.1. State diagram for the program in Listing 4.3

54 4 Synchronization

from process P or from process Q. However, the fourth state from the top
labeled (5. !wantQ, 13. wantQ=0, 1, 1) has only one outgoing edge, because
the statement 5. !wantQ in process P is not executable when the value of wantQ
is true (= 1).4

The number of reachable states (8) is much less than the number of possi-
ble states (36).

The program in Listing 4.3 is an abbreviated version of the program in
Listing 4.2.5 The printf statements representing the critical and noncritical
sections have been removed to obtain a more concise diagram. A printf
statement is always executable and does not change the variables of the pro-
gram, so if a state exists with a location counter before a print statement, there
also exists a state with the location counter after the statement and with the
same values for the variables. The same correctness specifications will thus
be provable whether the print statements appear or not.

Consider the mutual exclusion property for the program in Listing 4.2. It
holds if and only no state (8. printf(P), 18. printf(Q), x, y) is reachable for
arbitrary x and y. Therefore, mutual exclusion holds if and only there is no
state (9. wantP=0, 19. wantQ=0, x, y). Clearly, then, mutual exclusion holds
if and only if, in the abbreviated program, a state of the form (6. wantP=0,
13. wantQ=0, x, y) is not reachable. A quick glance at the diagram in Fig-
ure 4.1 shows that no such state exists, so mutual exclusion must hold.

The program is not free from deadlock. The state (5. !wantQ, 12. !wantP,
1, 1) is reachable and in that state both processes are trying to enter their
critical sections, but neither can succeed.

4.4 Atomic sequences of statements

It is quite difficult to come up with a fully correct solution to the critical
section problem just using expressions and assignment statements.6 How-
ever, easy solutions to the problem can be given if the system can execute
sequences of these statements atomically.

4 The state (5. !wantQ, 11. !wantP, 1, 1) near the bottom of the diagram is a state
from which no transition is possible and should have no outgoing edges; the two
edges curving back to the same state are an artifact of the way SPIN represents
such a state.

5 The layout of the program is slightly different from our usual style because of the
requirements of the SPINSPIDER tool used to generate the state transition diagram
(see Appendix A.3.)

6 See, for example, Dekker’s algorithm and Peterson’s algorithm, Algorithms 3.10
and 3.13 in PCDP.

4.4 Atomic sequences of statements 55

The program in Listing 4.4 contains a potentially blocking expression and
an assignment statement as one atomic sequence of statements (lines 6–9, 18–
21). This ensures that once process P has checked that !wantQ is true, it is not
possible for process Q to set wantQ to true before P sets wantP to true.

Listing 4.4. Atomic sequences of statements

1 bool wantP = false, wantQ = false;
2

3 active proctype P() {

4 do
5 :: printf("Noncritical section P\n");

6 atomic {

7 !wantQ;

8 wantP = true
9 }

10 printf("Critical section P\n");

11 wantP = false
12 od
13 }

14

15 active proctype Q() {

16 do
17 :: printf("Noncritical section Q\n");

18 atomic {

19 !wantP;

20 wantQ = true
21 }

22 printf("Critical section Q\n");

23 wantQ = false
24 od
25 }

In Listing 4.4, the potentially blocking statements (the expression !wantQ

at line 7 and the expression !wantP at line 19) are at the beginning of the
atomic sequences. Therefore, the atomic sequence may be blocked from ex-
ecuting, but once it starts executing, both statements are executed without
interference from the other process.

56 4 Synchronization

Verify that this program fulfils the correctness requirements of mutual
exclusion and of absence of deadlock. However, starvation is possible; the
techniques for verifying this property and for finding a counterexample are
presented in Chapter 5.

4.4.1 d_step and atomic∗

In Section 3.7 we mentioned that there are two constructs in PROMELA for
specifying that a sequence of statements must be executed atomically: d_step
and atomic.

The advantage of d_step is that it is extremely efficient because the state-
ments of the sequence are executed or verified as a single step in a fully de-
terministic manner. However, there are three limitations on d_step:

• Except for the first statement in the sequence (the guard), statements can-
not block.

• It is illegal to jump into the sequence or out of it using goto or break.
• Nondeterminism is always resolved by choosing the first true alternative

in a guarded command. For example, if a equals b in the following code,
the value of branch will always equal 1:

d_step {

if
:: a >= b -> max = a; branch = 1

:: b >= a -> max = b; branch = 2

fi
}

d_step is usually reserved for fragments of sequential code, while atomic
is preferred for implementing synchronization primitives.

Consider the program in Listing 4.5, which models an unreliable compo-
nent for relaying data. Process Source generates values for input and the
Process Destination prints the values of output. Process Relay transfers
data from the Source to the Destination. The atomic sequence (lines 13–
20) waits until the variable input has data and then waits until the vari-
able output is empty (modeled by zero); then, it nondeterministically either
transfers the value from input to output or it ignores the data. The program
works as expected and repeated random simulations print out different sub-
sequences of the input sequence.

If atomic is replaced by d_step, two problems occur. First, since nonde-
terminism is resolved deterministically in favor of the first alternative, no
data are ever dropped at line 18, and the output sequence is always the same

4.4 Atomic sequences of statements 57

Listing 4.5. Unreliable relay

1 #include "for.h"

2 byte input, output;

3

4 active proctype Source() {

5 for (i, 1, 10)

6 input == 0; /* Wait until empty */

7 input = i

8 rof (i)

9 }

10

11 active proctype Relay() {

12 do
13 :: atomic {

14 input != 0;

15 output == 0;

16 if
17 :: output = input

18 :: skip /* Drop input data */

19 fi
20 }

21 input = 0

22 od
23 }

24

25 active proctype Destination() {

26 do
27 :: output != 0; /* Wait until full */

28 printf("Output = %d\n", output);

29 output = 0

30 od
31 }

58 4 Synchronization

as the input sequence. Second, it is not legal to block at line 15 which is
within the d_step sequence; this can be modeled, for example, by using a
for-loop with an upper bound less than ten instead of the nonterminating
do-statement in Destination.

An unreliable relay can also be modeled using channels (Chapter 7):

active proctype Relay() {

byte i;

do
:: atomic {

input ? i;

if
:: output ! i

:: skip
fi

}

od
}

Again, changing atomic to d_step cancels the nondeterministic selection of
an alternative and can cause an error at the output statement output ! i

if the channel is full or if a rendezvous channel is used and the process
Destination is not ready.

4.5 Semaphores

Atomic sequences of statements can be used to model synchronization prim-
itives such as semaphores. The most widely known construct for synchro-
nizing concurrent programs is the semaphore. Here is a simple definition of a
semaphore using concepts of PROMELA:

A semaphore sem is a variable of type byte (nonnegative integers).
There are two atomic operations defined for a semaphore:
• wait(sem): The operation is executable when the value of sem is

positive; executing the operation decrements the value of sem.
• signal(sem): The operation is always executable; executing the

operation increments the value of sem.

Listing 4.6 shows a solution to the critical section problem using semaphores.
The wait operation is implemented using atomic to ensure that the value of
sem is decremented only when it is positive (lines 6–9, 18–21). The signal op-
eration needs no special implementation because the assignment statement

4.5 Semaphores 59

is atomic (lines 11, 23). Verify that the program fulfils the correctness proper-
ties of mutual exclusion and absence of deadlock.

Listing 4.6. The critical section problem with semaphores

1 byte sem = 1;

2

3 active proctype P() {

4 do
5 :: printf("Noncritical section P\n");

6 atomic { /* wait(sem) */

7 sem > 0;

8 sem--

9 }

10 printf("Critical section P\n");

11 sem++ /* signal(sem) */

12 od
13 }

14

15 active proctype Q() {

16 do
17 :: printf("Noncritical section Q\n");

18 atomic { /* wait(sem) */

19 sem > 0;

20 sem--

21 }

22 printf("Critical section Q\n");

23 sem++ /* signal(sem) */

24 od
25 }

60 4 Synchronization

Advanced: Fairness of semaphores

The subject of semaphores is more complex than this simple exam-
ple indicates. The difficulties arise when we try to define the fairness
of the semaphore operations. Even when a verification is performed
with weak fairness enabled (see Section 5.5), a computation for star-
vation is found because process Q can enter its critical section repeat-
edly while P does not.
In this computation, the only process that executes is process Q, which
repeatedly executes its entire loop from line 16 to 24. The computa-
tion is weakly fair because P is enabled infinitely often (after Q exe-
cutes sem++ at line 23); the nonfair computation simply chooses not
to execute the atomic statement from P when it is enabled.
The signal operation is usually defined to unblock one of the
processes blocked on the semaphore (if any) as part of its atomic op-
eration. A strong semaphore implements the set of blocked processes
as a FIFO (first in-first out) queue; this is easy to model in PROMELA

using channels (Chapter 7). The signal operation of a weak semaphore
unblocks an arbitrary element of the set; weak semaphores are harder
to model in PROMELA (see Exercise 6.15 of PCDP).

4.6 Nondeterminism in models of concurrent systems

Consider, for example, a communications system that must be able to re-
ceive and process an arbitrary stream of messages of several different types.
A natural approach to modeling this requirement is to generate the messages
stream by using a random number generator. If there are n message types
m0, m1, . . . , mn−1, each message in the stream is obtained by generating a ran-
dom number in the range 0 to n− 1.

However, this approach is flawed. While a random number generator can
be used to obtain a random computation (and this is precisely what SPIN

does in random simulation mode), for verification all computations must be
checked, not just those that happen to be generated randomly.

By design, SPIN does not contain constructs for modeling probability or
for specifying that an event must occur with a certain probability. The in-
tended use of model checking is to detect errors that occur under complex
scenarios that are unlikely to be discovered during system testing. “In a well-
designed system, erroneous behavior should be impossible, not just improb-
able” [SMC, p. 454].7

7 See also the discussion on p. 570 of SMC.

4.6 Nondeterminism in models of concurrent systems 61

In SPIN, nondeterminism is used to model arbitrary values of data: when-
ever a value – such as a message type in a stream – is needed, a nondeter-
ministic choice is made among all values in the range.

4.6.1 Generating values nondeterministically

Suppose that we want to model a client-server system in which the client non-
deterministically chooses which request to make; we can use an if-statement
whose guards are always true:8

active proctype Client() {

if
:: true -> request = 1

:: true -> request = 2

fi;
/* Wait for service */

if
:: true -> request = 1

:: true -> request = 2

fi;
/* Wait for service */

}

The code can be shortened by doing away with the expressions true which
serve no purpose. Instead, the assignment statements themselves – which are
always executable – can be used as guards:9

active proctype Client() {

if
:: request = 1

:: request = 2

fi;
/* Wait for service */

if
:: request = 1

:: request = 2

fi;
/* Wait for service */

}

8 You may want to study the program in Section 4.7.2 before reading this section.
9 The arrows are also not needed; they are just syntactic sugar for semicolons that

are separators, but since there is only one statement in each alternative there is
nothing to separate (Section 1.6).

62 4 Synchronization

In a random simulation, SPIN randomly chooses which alternative of an if-
statement to execute; here, the choice is between both alternatives of the
statement since they are both executable. In a verification, SPIN chooses the
first alternative and searches for a counterexample; if one is not found, it
backtracks and continues the search from the state that results from choosing
the second alternative.

Of course, it doesn’t make sense to model a client that generates only
two requests. A do-statement can be used to model a client that generates an
unending stream of requests in an arbitrary order:

active proctype Client() {

do
:: request = 1;

/* Wait for service */

:: request = 2;

/* Wait for service */

od
}

In Chapter 7 we will discuss some of the correctness properties that can be
checked for client-server systems.

4.6.2 Generating from an arbitrary range∗

We have shown how to model nondeterministically generated values from a
small range:

byte number;

if
:: number = 1

:: number = 2

:: number = 3

:: number = 4

fi

As the range of values gets larger, it becomes inconvenient to write alter-
natives for each value. The following PROMELA code shows how to choose
nondeterministically values from an arbitrary range, in this case from 0 to 9:

4.7 Termination of processes 63

#define LOW 0

#define HIGH 9

byte number = LOW;

do
:: number < HIGH -> number++

:: break
od

As long as the value of number is less than HIGH, both alternatives are exe-
cutable and SPIN can choose either one. If it chooses the first one, the value
of number is incremented; if it chooses the second, the loop is left and the cur-
rent value of number is used in the subsequent code. It follows that the final
value of number can be any value within the range.

To check that 9 is, in fact, a possible value of number, add the assertion

assert (number != HIGH)

after the do-statement and run a verification. You will get a counterexample
and this computation can be examined by running a guided simulation.

Do not put any faith in the uniformity of the probability distribution of
the “random numbers” generated using this technique. Assuming that SPIN

chooses uniformly between alternatives in the do-statement, the first value
0 has a probability of 1/2 while the last value 9 has a probability of 2−10.
Nondeterminism is used to generate arbitrary computations for verification,
not random numbers for a faithful simulation.

4.7 Termination of processes

4.7.1 Deadlock

Unfortunately, the program in Listing 4.2 is not a correct solution of the crit-
ical section problem. The processes of the program consist of loops with no
goto or break statements, so the program should never terminate.10 If you
run several random simulations of the program, you will likely encounter a
computation in which execution terminates with the output timeout. This
means that no statements are executable, a condition called deadlock.11

It is quite easy to construct the computation that leads to deadlock. Sim-
ply execute statements in perfect interleaving (one statement alternately
from each process); both wantP and wantQ are set to true (lines 6, 16) and

10 When running a simulation in SPIN, you normally limit of the number of state-
ments that can be executed by using the argument -uN (see Section 1.2).

11 timeout is discussed further in Section 8.1.1.

64 4 Synchronization

then both processes are blocked waiting for the other one to set its variable
to false (lines 7, 17).

An attempt at verification will discover an error called an invalid end state:

pan: invalid end state (at depth 8)

By default, a process that does terminate must do so after executing its last
instruction, otherwise it is said to be in an invalid end state. This error is
checked for regardless of any other correctness specifications. This default
behavior can be overridden as described in the next subsection.

4.7.2 End states∗

Consider the program in Listing 4.7. There are two server processes supply-
ing different services and one client process that requests service 1 and then
service 2. The client process indicates which service it needs by setting the
variable request to the number of the service; it then blocks waiting for the
expression request == 0 to become true. The guard of the alternative in one
of the server processes is now true, so it can provide the service (represented
by a printf statement). Then, the server resets request to zero to indicate
that the service is complete; this unblocks the client.

This PROMELA program is a reasonable model of a very simple client-
server system.12 However, if you simulate or verify it in SPIN, you will receive
an error message that there is an invalid end state. The reason is that while
the client executes a finite number of statements and then terminates, the
servers are always blocked at the guard of the do-statement waiting for it to
become executable. Now, this is acceptable behavior because servers should
wait indefinitely and be ready to supply a service whenever it is needed.
Since the server cannot know how many requests it will receive, it is unrea-
sonable to require termination of a process modeling a server.

You can indicate that a control point within a process is to be considered
a valid end point even though it is not the last statement of the process by
prefixing it with a label that begins with end:

active proctype Server1() {

endserver:

do
:: request == 1 -> . . .

od
}

12 Client-server systems are presented more systematically in Chapter 7.

4.7 Termination of processes 65

Listing 4.7. A client-server program with end states

1 byte request = 0;

2

3 active proctype Server1() {

4 do
5 :: request == 1 ->

6 printf("Service 1\n");

7 request = 0

8 od
9 }

10

11 active proctype Server2() {

12 do
13 :: request == 2 ->

14 printf("Service 2\n");

15 request = 0

16 od
17 }

18

19 active proctype Client() {

20 request = 1;

21 request == 0;

22 request = 2;

23 request == 0

24 }

Add end labels to both server processes in the program in Listing 4.7 and
show that a verification no longer reports an invalid end state.

An alternate way of ignoring end states is to ask SPIN to refrain from
reporting invalid end states during a verification:

jSpin

Select Options / Pan and add the argument -E. Be sure to remove
the argument when it is no longer needed.

Command line

Add the argument -E to the pan command for running the verifier.

66 4 Synchronization

The program in Listing 4.2 does fulfil the requirement of mutual exclusion;
this can be shown using the technique described in Listing 3.8: counting the
number of processes in their critical sections and asserting that the value of
the variable is less than or equal to 1. If you run a verification, be sure to turn
off checking of invalid end states as described above.

4.7.3 The order of process termination∗

A process terminates when it has reached the end of its code, but it is con-
sidered to be an active process until it dies. SPIN manages process allocation
in the LIFO (last in-first out) order of a stack, so a process can die only if it
is the most recent process that was created. Usually, the distinction between
process termination and death is not an issue, but it can sometimes explain
why a program does not end as expected.

Process termination and death are demonstrated by the program in List-
ing 4.8. The two servers each perform one service and then terminate, incre-
menting the variable finished that counts the number of processes that have
terminated. Since processes created by active proctype are instantiated in
the order written, the two server processes do not die until the client process
finds finished == 2 and terminates.

The output is just as we expect it to be:

11: proc 2 (Client) terminates

11: proc 1 (Server2) terminates

11: proc 0 (Server1) terminates

Suppose now that we change line 21 to finished == 3 so that the client
process does not terminate. By the LIFO rule, the server processes will not
terminate, and the simulation goes into a state called timeout in which no
process is at an executable statement:

timeout

#processes: 3

2 Client 2 0

1 Server 2 0

0 Server 2 0

All three processes are still active, though none are executable.

4.7 Termination of processes 67

Listing 4.8. Client-server termination

1 byte request = 0;

2 byte finished = 0;

3

4 active proctype Server1() {

5 request == 1;

6 request = 0;

7 finished++

8 }

9

10 active proctype Server2() {

11 request == 2;

12 request = 0;

13 finished++

14 }

15

16 active proctype Client() {

17 request = 1;

18 request == 0;

19 request = 2;

20 request == 0;

21 finished == 2;

22 }

Next, move the process Client so that it appears before the server processes
in the source code. Now, the server processes are created after the client process
so they can terminate without waiting for the client process, which is blocked,
hopelessly waiting for finished to receive the value 3:

timeout

#processes: 1

0 Client 2 0

5

Verification with Temporal Logic

In Sections 3.8 and 3.9 we showed how to use assertions to specify and
verify correctness properties of concurrent programs written in PROMELA.
However, assertions are not sufficient to specify and verify most correctness
properties of models. This chapter presents linear temporal logic (LTL), which
is the formal logic used for verification in SPIN.1 We start with an informal
description of correctness properties more advanced than assertions. This is
followed by an introduction to the syntax and semantics of LTL, an explana-
tion of how to specify correctness properties in LTL, and a description of the
techniques for using SPIN to verify that an LTL formula holds for a model.
Section 5.9 gives an overview of more advanced ways of expressing proper-
ties in temporal logic. For a definitive treatment of LTL, see [16, 17].

5.1 Beyond assertions

Assertions are limited in the properties that they can specify because they
are attached to specific control points in the processes. For example, in or-
der to verify that mutual exclusion holds for a solution to the critical section
problem, we inserted the following code at the control points representing
the critical section in each process:

critical++;

assert (critical <= 1);

critical--;

1 There are many forms of temporal logic; one, computational tree logic (CTL), is also
used extensively in verification [8]. Since SPIN limits itself to supporting LTL, the
use of the term “temporal logic” in this book refers to LTL.

70 5 Verification with Temporal Logic

Usually, however, it is necessary or at least more convenient to express a
correctness property as a global property of the system that is not associated
with specific control points. Here are several examples of such properties:

• Mutual exclusion
Mutual exclusion can be expressed as a global invariant:

In every state of every computation, critical <= 1.
• Absence of deadlock (invalid end states)

A PROMELA program is said to deadlock if it enters an invalid end state
(Sections 4.7.1–4.7.2); this can be expressed as a global invariant:

In every state of every computation, if no statements are executable, the
location counter of each process must be at the end of the process or at a
statement labeled end.

This correctness property is checked automatically by SPIN.
• Array index bounds

Let a be an array, let LEN be the length of the array, and let i be a variable
used to index the array. An important global invariant is:

In every state of every computation, 0 <= i <= LEN-1.
This formula could be added as an assertion after every statement that
assigns a new value to i, but it is easier to specify that it holds in every
state. This avoids errors caused if you forget to attach an assertion to one
of the relevant statements.

• Quantity invariant
In distributed algorithms called token-passing algorithms, mutual exclusion
is achieved by passing a token – an explicit representation of the permis-
sion to enter the critical section – among the processes (see Sections 10.6
and 10.7 of PCDP). A global invariant that must hold in such algorithms
is:

In every state of every computation, there is at most one token in exis-
tence.

Furthermore, there are some correctness properties that simply cannot
be expressed using assertions, because the properties cannot be checked by
evaluating an expression in a single state of a computation. For example, in
the critical section problem the following two properties are expressed as
relations between two states of the computation: a state s in which processes
are trying to enter their critical sections, and a state t in which a process does
enter it. t may occur thousands of states later in the computation than s:

5.2 Introduction to linear temporal logic 71

• Absence of deadlock2

In every state of every computation, if some processes are trying to enter
their critical sections, eventually some process does so.

• Absence of starvation
In every state of every computation, if a process tries to enter its critical
section, eventually that process does so.

A correctness specification like the ones given in this section is expressed
in SPIN by a finite automaton called a never claim that is is executed together
with the finite automaton that represents the PROMELA program. Specify-
ing a correctness property directly as a never claim is difficult; instead, a for-
mula written in linear temporal logic is translated by SPIN into a never claim,
which is then used for verification. A brief introduction to never claims is
given in Section 10.3, but for most purposes you need not concern yourself
with never claims and can work entirely with LTL formulas.

The next section presents LTL as a formal logic. This is followed by sec-
tions describing how to express correctness properties of models in LTL and
how to carry out verifications in SPIN.

5.2 Introduction to linear temporal logic

5.2.1 The syntax of LTL

LTL is based upon the propositional calculus; formulas of the propositional
calculus are composed from atomic propositions (denoted by letters p, q, . . .)
and the operators:

Operator Math SPIN

not ¬ !

and ∧ &&

or ∨ ||

implies → ->

equivalent ↔ <->

We have given both the usual mathematical symbols and the syntax used for
writing formulas in SPIN; here is a formula written in both notations:

(p ∧ ¬q) → (p ∨ ¬q), (p && !q) -> (p || !q).

2 The deadlock (invalid end states) described previously states that the computa-
tion cannot continue; this specification of deadlock states that the computation can
continue, but processes cannot enter their critical sections.

72 5 Verification with Temporal Logic

A formula of LTL is built from atomic propositions and from operators
that include the operators of the propositional calculus as well as temporal
operators. The atomic propositions of LTL are described in the next subsec-
tion. The temporal operators are:

Operator Math SPIN

always 2 []

eventually 3 <>

until U U

The 2 and 3 operators are unary and the U operator is binary. Temporal and
propositional operators combine freely, so the following formula (given in
both mathematical and PROMELA notation) is syntactically correct:

2((p ∧ q) → r U (p ∨ r)), []((p && q) -> r U (p || r)) .

Read this as:

Always, (p and q) implies that r holds until (p or r) holds.

5.2.2 The semantics of LTL

The semantics, the meaning, of a syntactically correct formula is defined by
giving it an interpretation: an assignment of truth values, T (true) or F (false),
to its atomic propositions and the extension of the assignment to an interpre-
tation of the entire formula according to the rules for the operators. For the
propositional calculus these are given by the familiar truth tables, where A
and B are any formulas:

A B ¬A A ∧ B A ∨ B A → B A ↔ B

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

For temporal logic, the semantics of a formula is given in terms of compu-
tations and the states of a computation. The atomic propositions of temporal
logic are boolean expressions that can be evaluated in a single state inde-
pendently of a computation. For example, let critical be the value of the vari-
able critical in a program for the critical section problem; the expression
critical ≤ 1 is an atomic proposition because it can be assigned a truth value
in a state s just by checking the value of the variable critical in s. Similarly,
if csp is a boolean expression that is true if and only if the location counter

5.2 Introduction to linear temporal logic 73

Fig. 5.1. State diagram for the third attempt

of process P is at the control point corresponding to the critical section of the
process, then csp is an atomic proposition because it can be evaluated in any
single state.

Atomic propositions can be combined using the operators of the proposi-
tional calculus; such formulas can also be evaluated just by checking values
in a single state. For example, if csq is similar to csp but for process Q, the
expression ¬(csp ∧ csq) specifies that mutual exclusion holds in the state in
which it is evaluated.

74 5 Verification with Temporal Logic

Consider again the program for the critical section problem in Listing 4.3
and its state diagram in Figure 4.1 (repeated in Figure 5.1). A computation
of the program is an infinite sequence of states that starts in the initial state
(4. wantP=1, 11. wantQ=1, 0, 0), and continues by taking legal transitions,
which are the ones shown in the diagram. For example, here are the first few
states of a computation:

s0 = (4. wantP=1, 11. wantQ=1, 0, 0) −→
s1 = (4. wantP=1, 12. !wantP, 0, 1) −→
s2 = (4. wantP=1, 13. wantQ=0, 0, 1) −→
s3 = (5. !wantQ, 13. wantQ=0, 1, 1) −→
s4 = (5. !wantQ, 11. wantQ=1, 1, 0) −→
s5 = (6. wantP=0, 11. wantQ=1, 1, 0) −→
s6 = (4. wantP=1, 11. wantQ=1, 0, 0)

A computation, an infinite sequence of states, is obtained by repeating the
same transitions indefinitely. Since the last state is the same as the first, the
infinite sequence of states can be finitely presented by identifying the first and
last states; that is, instead of creating a new state s6, we create a transition
from s5 to s0:3

s0 s1 s2 s3 s4 s5

�� �
 �� �
 �� �
 �� �
 �� �
 �� �
4,11,0,0 4,12,0,1 4,13,0,1 5,13,1,1 5,11,1,0 6,11,1,0- - - - -
?

Process P is in its critical section if its location counter is at line 6 and process
Q is in its critical section if its location counter is at line 13. Let csp and csq be
atomic propositions representing these properties. Clearly, for the computation
shown above, the formula ¬(csp∧ csq) that expresses the correctness property
of mutual exclusion is true in all its states.

We have shown that this formula is true for one specific computation, but
since there are no states in which process P is at line 6 and process Q is at
line 13, we can generalize and claim that the following statement is true:

The formula ¬(csp∧ csq) is true in every state of every computation.

Let us now show how to express this property in LTL and how to verify that
the property holds for the program in Listing 4.3.

3 In this diagram, the values of the location counters are indicated by line numbers
without the source code.

5.3 Safety properties 75

5.3 Safety properties

5.3.1 Expressing safety properties in LTL

Let A be an LTL formula and let τ = (s0, s1, s2, . . .) be a computation.
Then 2A, read always A, is true in state si if and only if A is true for
all sj in τ such that j ≥ i.

The operator is reflexive so if 2A is true in a state s, then A must also be true
in s. The formula 2A is called a safety property because it specifies that the
computation is safe in that nothing “bad” ever happens, or equivalently, that
the only things that happen are “good.”

We can draw a diagram of a computation, labeling each state si with A
if A is true in si and with ¬A if A is false in si. If the following diagram is
extended indefinitely with all states labeled A, then 2A is true in s0:

s0 s1 s2 s3 s4

���� ���� ���� ���� ����
A A A A A · · ·- - - - -

The correctness property of mutual exclusion can be expressed by the LTL
formula 2¬(csp ∧ csq). This is a safety property because it is true if some-
thing “bad” – csp ∧ csq, meaning the two processes in their critical section
– never happens. Equivalently, the only states the computation enters are
“good” ones in which ¬(csp∧ csq) is true.

Important: In linear temporal logic, each formula implicitly refers to all com-
putations of a model. Therefore, when a correctness property for a model is
specified by an LTL formula, it means that the property holds if the formula
is true in all computations of the model. If SPIN finds even a single coun-
terexample – a computation in which the formula is false – the correctness
property does not hold for the model.

5.3.2 Expressing safety properties in PROMELA

For the program in Listing 4.3 we verified that mutual exclusion holds by
writing assert statements in each critical section. It is also possible to express
this property in LTL. As before, we declare a variable critical, incrementing
it at the beginning of each critical section and decrementing it at the end:

76 5 Verification with Temporal Logic

active proctype P() {

do
:: wantP = true;

!wantQ;

critical++;

critical--;

wantP = false;
od

}

/* Similarly for process Q */

Since the critical section in the abbreviated program is not explicitly written,
the statement critical-- immediately follows the statement critical++,
and the critical section is the control point between them.

The symbol mutex is defined to represent an expression that is true if and
only if mutual exclusion holds:

#define mutex (critical <= 1)

Mutual exclusion can now be specified in PROMELA by the LTL formula:

[]mutex

Alternatively, we could define two variables csp and csq of boolean type,
and set these variables to indicate when a process is in its critical section:

active proctype P() {

do
:: wantP = true;

!wantQ;

csp = true;
csp = false;
wantP = false;

od
}

/* Similarly, for process Q */

The LTL formula expressing mutual exclusion is now

[]!(csp && csq)

A third way of expressing this property that does not use ghost variables
is described in Section 5.7.

5.3 Safety properties 77

Fig. 5.2. Verifying a safety property in JSPIN

5.3.3 Verifying safety properties in SPIN

This section shows how to verify safety properties in SPIN.

jSpin

The upper right corner of the JSPIN display contains the interface
that is used to enter LTL formulas and to perform verifications (Fig-
ure 5.2). Write the LTL formula in the text field provided and select
Translate. The formula is saved in a file with the same name as the
PROMELA source file and with extension prp; then SPIN is called to
translate the formula into a never claim, which is displayed in the
right pane (though you may ignore it) and saved in a file with exten-
sion ltl.
Ensure that Safety is selected for the verification mode and select
Verify. SPIN will perform the verification and display the result in
the right pane. In this case, no errors are found so we have proved
that mutual exclusion holds for this program.
There are three other buttons related to LTL formulas in the JSPIN

interface. Clear clears the field for the LTL formula and ensures that
subsequent verification runs will not use the contents of the field.
Load brings up a file chooser to load an LTL formula from a prp file.
Stop terminates a verification if it is taking too much time.

Command line

To verify a safety property, first add the negation of the LTL formula
with the -f argument to the SPIN command that generates the veri-

78 5 Verification with Temporal Logic

fier. Then, compile the verifier with the -DSAFETY argument so that it
is optimized for checking safety properties. Finally, run pan as usual:4

spin -a -f "![]mutex" third-safety.pml

gcc -DSAFETY -o pan pan.c

pan

As expected, no errors are reported.
Since the program will probably change more frequently than the
correctness specification, you can save the LTL formula

![]mutex

in a one-line file safety.prp and include the file during the genera-
tion of the verifier using the -F argument:

spin -a -F safety.prp third-safety.pml

Alternatively, the translation of the LTL formula to a never claim can
be saved in a file and this file included in the generation of the verifier
using the -N argument:

spin -a -f "![]mutex" > safety.ltl

spin -a -N safety.ltl third-safety.pml

If the verification seems to be taking too much time, you can termi-
nate it as you would terminate any program (ctrl-C).

Warning

Atomic propositions in an LTL formula must be identifiers
starting with a lower-case letter.

Furthermore, they must be boolean variables or defined as sym-
bols for boolean-valued expressions.

Warning

Section 10.3 explains why the correctness specification must be
negated. This is done automatically in JSPIN, but if you run SPIN

from the command line, be sure to do it yourself.

4 You may need to use single quotes instead of double quotes.

5.4 Liveness properties 79

Warning

SPIN runs in a separate process that is forked from the process
that runs JSPIN, so it is possible to terminate JSPIN without termi-
nating SPIN. In that case, your computer may start to run slowly
if SPIN is executing a long verification or a simulation of an infi-
nite loop, and you will have to terminate SPIN manually.

In Windows this is done by pressing ctrl-alt-del to bring
up the Task Manager, then selecting Task List and Processes

and selecting End Process for each occurrence of spin.exe or
pan.exe.

5.4 Liveness properties

Let A be a formula of LTL and let τ = (s0, s1, s2, . . .) be a computation.
Then 3A, read eventually A, is true in state si if and only if A is true
for some sj in τ such that j ≥ i.

The operator is reflexive, so if A is true in a state s, then so is 3A. The formula
3A is called a liveness property because it specifies that something “good”
eventually happens in the computation.

If csp is the atomic proposition that is true in a state if process P is in its
critical section, then 3csp holds if and only if process P eventually enters its
critical section.5

It is essential that correctness specifications contain liveness properties
because a safety property is vacuously satisfied by an empty program that
does nothing! For example, a solution to the critical section problem in which
neither process tries to enter its critical section trivially fulfils the correctness
properties of mutual exclusion and absence of deadlock:

start:

do
:: printf("Noncritical section\n");

goto start;

wantP = true; /* Try to enter the critical section */

printf("Critical section\n")

od

5 A better way of specifying absence of starvation is presented in Section 5.9.2.

80 5 Verification with Temporal Logic

5.4.1 Expressing liveness properties in SPIN

Listing 5.1 shows a program for the critical section problem.6 We leave it to
the reader to verify that both mutual exclusion and absence of deadlock hold.
Unfortunately, this program is not fully correct because starvation may occur,
that is, there is a computation in which process P never enters its critical
section:

Listing 5.1. Critical section with starvation

1 bool wantP = false, wantQ = false;
2

3 active proctype P() {

4 do
5 :: wantP = true;
6 do
7 :: wantQ ->

8 wantP = false;
9 wantP = true

10 :: else -> break
11 od;
12 wantP = false
13 od
14 }

15

16 active proctype Q() {

17 do
18 :: wantQ = true;
19 do
20 :: wantP ->

21 wantQ = false;
22 wantQ = true
23 :: else -> break
24 od;
25 wantQ = false
26 od
27 }

6 This is the fourth attempt described in Section 3.8 of PCDP.

5.4 Liveness properties 81

s0 = (5. wantP=1, 18. wantQ=1, 0, 0) −→
s1 = (5. wantP=1, 20. wantP, 0, 1) −→
s2 = (5. wantP=1, 25. wantQ=0, 0, 1) −→
s3 = (7. wantQ, 25. wantQ=0, 1, 1) −→
s4 = (8. wantP=0, 25. wantQ=0, 1, 1) −→
s5 = (9. wantP=1, 25. wantQ=0, 0, 1) −→
s6 = (9. wantP=1, 18. wantQ=1, 0, 0) −→
s7 = (9. wantP=1, 20. wantP, 0, 1) −→
s8 = (9. wantP=1, 25. wantQ=0, 0, 1) −→
s9 = (7. wantQ, 25. wantQ=0, 1, 1)

Since state s9 is the same as state s3, they can be identified and the sequence
of states extended to an infinite computation:

s0 s1 s2 s3 s4

s8 s7 s6 s5

�� ���� ���� ���� ��� � � 9, 25, 0, 19, 18, 0, 09, 20, 0, 19, 25, 0, 1

6
?

�� ���� ���� ���� ���� ��- - - -5, 18, 0, 0 5, 20, 0, 1 5, 25, 0, 1 7, 25, 1, 1 8, 25, 1, 1

The critical section of process P (line 12) does not appear in any state of this
computation, demonstrating that absence of starvation does not hold for this
program.

5.4.2 Verifying liveness properties in SPIN

Add the statements

csp = true;
csp = false;

between lines 11 and 12 of the program in Listing 5.1; then the LTL formula
<>csp expresses absence of starvation for process P. The verification of the
temporal formula is carried out in a manner similar to that of the safety
property, except that it must be performed in a mode called searching for
acceptance cycles (Section 10.3.2). Weak fairness, explained in Section 5.5, must
also be specified when this program is verified.

82 5 Verification with Temporal Logic

jSpin

Select Acceptance instead of Safety from the pulldown menu, and
ensure that the box labeled Weak fairness is checked. Select Verify.

Command line

Run the verifier with the -a (acceptance) argument and the -f (weak
f airness) argument:7

spin -a -f "!<>csp" fourth-liveness.pml

gcc -o pan pan.c

pan -a -f

Liveness does not hold for this program; the error message is

pan: acceptance cycle (at depth 14)

For safety properties, a counterexample consists of one state where the for-
mula is false, but for a liveness property, a counterexample is an infinite com-
putation in which something good – in this case, csp becomes true – never
happens. To produce the counterexample, run a guided simulation with the
trail. The output from JSPIN is:

Process Statement wantQ wantP

1 Q wantQ = 1

1 Q wantQ = 0 1

0 P wantP = 1 0

1 Q wantQ = 1 1 0

1 Q wantP 1 1

0 P wantQ 1 1

<<<<<START OF CYCLE>>>>>

1 Q wantQ = 0 1 1

1 Q wantQ = 1 1 0

1 Q wantP 1 1

0 P wantP = 0 1 1

1 Q wantQ = 0 0 1

1 Q wantQ = 1 0 0

0 P wantP = 1 0 1

0 P wantQ 1 1

1 Q wantQ = 0 1 1

0 P wantP = 0 1 0

7 Ensure that the -DSAFETY argument is not used in the compilation.

5.5 Fairness 83

1 Q wantQ = 1 0 0

1 Q wantQ = 0 0 1

0 P wantP = 1 0 0

1 Q wantQ = 1 1 0

1 Q wantP 1 1

0 P wantQ 1 1

spin: trail ends after 50 steps

The line START OF CYCLE indicates that the subsequent states form a cycle
that can be repeated indefinitely. Since a variable appears in the SPIN output
only when it is assigned to, the absence of a value for csp means that the
variable has never been assigned to and hence that starvation occurs in this
computation.

Advanced: Finding the shortest counterexamples
SPIN did not find the shortest counterexample. That is because SPIN

performs a depth-first search of the state diagram and stops with the
first counterexample it finds. The -i and -I arguments to pan can be
used to perform an iterated search for shorter counterexamples; see
pages 24–25 of SMC for details.

5.5 Fairness

Consider again the program for the critical section problem in Listing 5.1. Is
the following computation a counterexample for the property of absence of
starvation?

s0 = (5. wantP=1, 18. wantQ=1, 0, 0) −→
s1 = (5. wantP=1, 20. wantP, 0, 1) −→
s2 = (5. wantP=1, 25. wantQ=0, 0, 1) −→
s3 = (5. wantP=1, 18. wantQ=1, 0, 0)

State s3 is identical to s0, so an infinite computation can be composed from
just the three states s0, s1, s2. In this computation, process Q enters its critical
section repeatedly, while process P never executes any of its statements. The
computation is a counterexample to a claim that <>csp is true, but it is unsat-
isfactory because it doesn’t give process P a “fair” chance to try to enter its
critical section. This concept can be formalized by the following definition:8

A computation is weakly fair if and only if the following condition
holds: if a statement is always executable, then it is eventually executed
as part of the computation.

8 There is also a concept called strong fairness; see Section 2.7 of PCDP.

84 5 Verification with Temporal Logic

The computation described above is not weakly fair: Although like all
assignment statements, 5. wantP = true is always executable, it is never
executed in the computation. As we have shown, absence of starvation does
not, in fact, hold for the program in Listing 5.1, but it seems reasonable to
require that only fair computations be considered as counterexamples.

jSpin

Ensure that the box labeled Weak fairness is checked before select-
ing Verify. (This is the default.)

Command line

Add the argument -f (in addition to the argument -a) when execut-
ing the verifier pan.

Warning

Restricting verification to computations that are weakly fair re-
quires a lot of memory. By default, SPIN limits the number of
processes to two in a verification with fairness; if there are more
processes, you need to compile the verifier with a higher value
for the parameter -DNFAIR=n.

We conclude this section with an example of a program whose properties
depend critically on fairness (Listing 5.2). The assignment in process Q is al-
ways enabled, so in a weakly fair computation it will eventually be executed,
causing the loop in process P to terminate. If weak fairness is not specified,
there is a nonterminating computation in which the do-statement is executed
indefinitely. Thus the correctness property “the program always terminates”
holds if and only if computations are required to be weakly fair.

5.6 Duality

The operators 2 and 3 are dual in a manner similar to the duality expressed
by deMorgan’s laws:

¬ (p ∧ q) ≡ (¬p ∨ ¬ q), ¬ (p ∨ q) ≡ (¬p ∧ ¬ q).

Passing a negation through a unary temporal operator changes the operator
to the other one:

¬2p ≡ 3¬ p, ¬3p ≡ 2¬p.

5.7 Verifying correctness without ghost variables∗ 85

Listing 5.2. Termination under weak fairness

1 int n = 0;

2 bool flag = false;
3

4 active proctype P() {

5 do
6 :: flag -> break
7 :: else -> n = 1 - n

8 od
9 }

10

11 active proctype Q() {

12 flag = true
13 }

Since double negations cancel out, duality can be used to simplify formulas
with temporal operators. Let good and bad be atomic propositions such that
good is equivalent to ¬bad. Then we have the following equivalences:

¬2good ≡ 3¬ good ≡ 3¬¬ bad ≡ 3 bad,
¬3good ≡ 2¬ good ≡ 2¬¬ bad ≡ 2 bad.

These make sense when read out loud: if it is false that something good is
always true, then eventually something bad must happen; if it is false that
something good eventually happens, then something bad is always true.

It is important to get used to reasoning with the duality of the temporal
operators because negations of correctness specifications are at the founda-
tion of model checking (Section 10.3).

5.7 Verifying correctness without ghost variables∗

We have used ghost variables like critical and csp as proxies for control
points in a PROMELA program. While this causes no problems in the small
programs shown in the book, when modeling large systems you will want
to keep the number of variables as small as possible. Ghost variables also
unnecessarily complicate graphical representations of the state transition di-
agrams that are generated by the SPINSPIDER tool (Appendix A.3).

PROMELA supports remote references that can be used to refer to control
points in correctness specifications, either directly within never claims or in

86 5 Verification with Temporal Logic

LTL formulas. For example, in a program for the critical section problem,
we can replace the ghost variables by defining labels cs at the control points
corresponding to the critical sections of the two processes and then defining
a symbol that expresses mutual exclusion using remote references:

#define mutex !(P@cs && Q@cs)

active proctype P() {

do
:: wantP = true;

!wantQ;

cs: wantP = false;
od

}

/* Similarly for process Q */

The expression P@cs returns a nonzero value if and only if the location
counter of process P is at the control point labeled by cs. Mutual exclusion
holds only if both P@cs and Q@cs cannot be true at the same time, expressed
as []mutex. A verification run shows that this formula does indeed hold.

It is also possible to refer to the value of a local variable of a process using
the syntax process:variable.

Warning

A remote reference is not a symbol so it cannot appear directly
within an LTL formula. It can appear in a boolean expression for
which a symbol is defined as shown above.

5.8 Modeling a noncritical section∗

One of the correctness properties of the critical section problem is that a
process be able to enter its critical section infinitely often even if another
process fails in its noncritical section. This can be modeled in PROMELA by
including a nondeterministic if-statement in a process that is allowed to fail.

The program in Listing 5.3 is a solution to the critical section problem
that achieves mutual exclusion.9 This can be checked by verifying the safety
property shown in Section 5.7: define the symbol mutex as !(P@cs && Q@cs)

and verfiy []mutex.

9 This is the first attempt described in Chapter 3 of PCDP.

5.8 Modeling a noncritical section∗ 87

Lines 5–8 model the noncritical section: P can nondeterministically choose
to do nothing (line 6) or to fail by blocking until false becomes true, which,
of course, will never occur (line 7).

The program in Listing 5.3 is not a correct solution to the critical sec-
tion problem, because if process P fails in its noncritical section (by blocking
at line 7), process Q will eventually become blocked indefinitely waiting for
turn == 2 to become true (line 16).

Listing 5.3. Modeling failure in the noncritical section

1 byte turn = 1;

2

3 active proctype P() {

4 do
5 :: if
6 :: true
7 :: true -> false
8 fi;
9 turn == 1;

10 cs: turn = 2

11 od
12 }

13

14 active proctype Q() {

15 do
16 :: turn == 2;

17 cs: turn = 1

18 od
19 }

Now add an if-statement like the one in lines 5–8 to one of the processes
of a correct solution to the critical section problem: Dekker’s algorithm (Al-
gorithm 3.10 of PCDP) or Peterson’s algorithm (Listing 5.4 at the end of this
chapter). Define the symbol live as Q@cs and verify the absence of starvation:
[]<>live. Process P fails only when wantP is false, so process Q can continue
entering its critical section infinitely often because the expression at line 17
always evaluates to true regardless of the value of the variable last.

88 5 Verification with Temporal Logic

5.9 Advanced temporal specifications∗

The temporal operators 2 and 3 can be applied to any formula of LTL, so that
233A and 323(A ∧ 2B) are syntactically correct. It is beyond the scope
of this book to present the deductive theory of LTL: axioms, rules of infer-
ences, and theorems relating to properties of formulas such as associativity
and commutivity (see MLCS, Chapter 12). We just mention two results:

• A formula with sequences of consecutive occurences of the operators 2

or 3 is equivalent to one in which the sequences are collapsed to a single
occurrence of the operator. For example, 2233A is equivalent to 23A.

• A formula with any sequence of alternate occurences of the operators 2

and 3 is equivalent to one in which the sequence is collapsed into one of
the two-operator sequences 23 or 32. For example, 323A is equivalent
to 23A.

Thus, any sequence of unary temporal operators can be collapsed into a se-
quence of one or two operators.

The next two subsections describe the use of two-operator sequences in
formulas expressing commonly used correctness specifications. This is fol-
lowed by two subsections on the binary temporal operator U and a final
subsection on the next operator, which is rarely used in SPIN.

Temporal logic formulas with more than two or three operators are diffi-
cult to understand. To help write correctness specifications in temporal logic
a set of patterns has been developed at Kansas State University. The patterns
are classified by properties such as precedence and existence, as well as by
scope such as before and between. Formulas are given not just for the linear
temporal logic used in SPIN but also for other logics used in verification. The
address of the website of this project is given in Appendix B.

5.9.1 Latching

The formula 32A expresses a latching property: A may not be true initially
in a computation, but eventually it becomes true and remains true:

s0 s1 s2 s3 s4 s5 s6 s7

���� ���� ���� ���� ���� ���� ���� ����
¬A ¬A A A A A A A- - - - - - -

?

The formula 32A is true in s0: Although A is not true in s0 or s1, it becomes
true in s2 and remains true in all subsequent states of the computation.

5.9 Advanced temporal specifications∗ 89

Latching is important because it is unusual for a property to be true ini-
tially and always; rather, some statements must be executed to make the
property true, although once it becomes true, the property remains true.
Latching can also express properties that relate to exceptional situations.
For example, suppose that a multiprocessor system is designed so that if
a processor fails it automatically sets its variables to zero. Then for the pro-
gram in Listing 5.1, we could claim 3failsQ → 32¬wantQ, that is, if ever the
processor executing process Q fails, the value of wantQ is latched to false.10

From this we can deduce that process P will not be starved even if Q fails
because eventually the guard wantQ in line 7 will always be false and the
else-alternative in line 10 can be taken.

5.9.2 Infinitely often

The formula 23A expresses the property that A is true infinitely often: A need
not always be true, but at any state in the computation s, A will be true in s
or in some state that comes after s:

s0 s1 s2 s3 s4 s5 s6 s7

���� ���� ���� ���� ���� ���� ���� ����
¬A ¬A ¬A ¬A ¬A ¬A ¬AA- - - - - - -

?

It is easy to see that A is true in the states s3, s9, s15, . . ., so at any state si, A is
true in one of the states si, si+1, si+2, si+3, si+4, si+5.

For solutions to the critical section problem, liveness means not just that
a process can enter its critical section, but that it can enter its critical section
repeatedly. This can be modeled in PROMELA as follows. First, after setting a
variable that indicates that P is in its critical section, we immediately reset it
to indicate that P has left its critical section:

active proctype P() {

do
:: /* Try to enter critical section */

csp = true;
csp = false;
/* Leave critical section */

od
}

10 wantQ can be considered to “belong” to process Q because it is only assigned to in
Q, while process P only reads its value.

90 5 Verification with Temporal Logic

Then – if the algorithm is free from starvation – we can verify the program
for the temporal formula []<>csp.

5.9.3 Precedence

The operators 2 and 3 are unary and cannot express properties that relate
two points in time, such as the precedence property that requires that A be-
come true before B becomes true. This can be expressed with the binary op-
erator U called until and written U in SPIN:

¬BUA.

Read this as: B remains false until A becomes true. More formally:

pUq is true in state si of a computation τ if and only if there is some
state sk in τ with k ≥ i, such that q is true in sk, and for all sj in τ such
that i ≤ j < k, p is true in sj.

If q is already true in si, the second requirement is vacuous.
The formula ¬BUA is true in s0 of the following computation because B

remains false as long as A does; only in s4, when A becomes true, does B also
become true:

s0 s1 s2 s3 s4 s5

�� ���� ���� ���� ���� ���� ��¬A,¬B ¬A,¬B ¬A,¬B ¬A,¬B A, B ¬A, B- - - - -
?

Note that B need not be true in s4, because we are only interested in specify-
ing that it remain false until A becomes true. In fact, B can be false throughout
the entire computation, and the truth of A beyond its first true occurrence is
irrelevant; it follows that ¬BUA is true in s0 of the following computation:

s0 s1 s2 s3 s4 s5

�� ���� ���� ���� ���� ���� ��¬A,¬B ¬A,¬B A,¬B ¬A,¬B ¬A,¬B ¬A,¬B- - - - -
?

The operator U is called the strong until operator, because the subformula
to the right of U is required to become true eventually. In fact 3q can be
defined as true Uq. Since true is trivially true, true Uq is true if and only if q
eventually becomes true.

There is a weak until operator W that does not require that the right sub-
formula eventually become true. The two operators are related as follows:

5.9 Advanced temporal specifications∗ 91

pUq ≡ pWq ∧3q, pWq ≡ pUq ∨2p.

Warning

SPIN does not have the weak until operator W .

Advanced: The V operator
SPIN has an operator V that is defined so that pVq is equivalent to
!((!p) U (!q)). The operator V is not the same as W ; if it were,
the corresponding formula would be !((!q) U (!p && !q)).

5.9.4 Overtaking

We will demonstrate the use of the U operator to specify one-bounded over-
taking in Peterson’s algorithm (Listing 5.4), a correct solution to the critical
section problem. One-bounded overtaking means that if process P tries to
enter its critical section, process Q can enter its critical section at most once
before P does.

Let us define the symbols:

#define ptry P@try

#define qcs Q@cs

#define pcs P@cs

If process P is not in its critical section, it is not true that csq is false, and it
is certainly not true that csq remains false until P enters its critical section.
First, process Q may currently be in its critical section, but even if it isn’t, it
may overtake process P and enter its critical section first.

One-bounded overtaking is expressed by the LTL formula [17, p. 265]:

[](ptry -> (!qcs U (qcs U (!qcs U pcs))))

A nested until formula of this form expresses the property that a sequence of
intervals must satisfy successive subformula. The formula above expresses
the property that, always, if process P is trying to enter its critical section (ptry
is true), the computation must start with the following sequence of intervals:
(a) process Q is not in its critical section (!qcs); (b) process Q is in its critical
section (qcs); (c) again, process Q is not in its critical section (!qcs); and finally
(d) process P is in its critical section (pcs).

According to the definition of the U operator, the intervals may be empty,
but the correctness of this property ensures that there cannot be two separate
intervals where qcs is true before the state where pcs becomes true.

Run a verification of the program in Listing 5.4 for this formula and show
that one-bounded overtaking holds.

92 5 Verification with Temporal Logic

Listing 5.4. Peterson’s algorithm

1 bool wantP, wantQ;

2 byte last = 1;

3

4 active proctype P() {

5 do
6 :: wantP = true;
7 last = 1;

8 try: (wantQ == false) || (last == 2);

9 cs: wantP = false
10 od
11 }

12

13 active proctype Q() {

14 do
15 :: wantQ = true;
16 last = 2;

17 try: (wantP == false) || (last == 1);

18 cs: wantQ = false
19 od
20 }

Warning

The operator U is defined in SPIN to be left-associative, while the
operator U is defined to be right-associative in [17, p. 48], the de-
finitive reference on linear temporal logic. Right-associativity is
more natural because it corresponds to a sequence of intervals, as
explained in [17].

To avoid confusion, use parentheses liberally!

5.9 Advanced temporal specifications∗ 93

Advanced: Bounded overtaking with weak until

Normally, one-bounded overtaking would be verified using a for-
mula with the weak until operatorW rather than U . This is because in
the critical section problem a process need not attempt to execute its
critical section, so csq may never become true. Since W is not imple-
mented in SPIN, we have used U ; the verification still works because
the algorithm in Listing 5.4 does not model a process that remains in
its noncritical section.

5.9.5 Next

Temporal logic contains an additional unary operator X , called next and
written X in SPIN. X A is true in a state si of a computation if A is true in
the following state si+1. The operator is of limited usefulness for two rea-
sons. First, the usual model of a concurrent or distributed system abstracts
away from the concept of time. For example, in a client-server system, we
want to specify that a client process eventually receives a service from a server
process, but it doesn’t really matter if that occurs in the next state or ten
states later. The modeling of real-time systems in which time does matter is
discussed in the case studies in Sections 11.3 and 11.4.

The second reason for avoiding X is that without this operator temporal
logic formulas are stutter invariant. This means that any correctness specifica-
tion that is true in a computation remains true if duplicate consecutive states
are removed to form a more concise computation. The algorithms in SPIN

are more efficient if stutter-invariant specifications are used. In fact you may
have noticed the following message from SPIN:

warning: for p.o. reduction to be valid

the never claim must be stutter-invariant

(never claims generated from LTL formulae

are stutter-invariant)

p.o. reduction refers to partial order reduction, which is one of the main op-
timizations that SPIN is able to perform (Section 10.2.) As the last lines of
the message note, if you limit yourself to writing correctness specifications
in LTL, you need not worry about affecting this optimization.

For more on these topics see SMC Chapter 6.

6

Data and Program Structures

As we have noted more than once, PROMELA is designed for modeling a
system, not for implementing one with an executable program. Typically,
a model will be relatively small in size, so that it will be feasible to verify
correctness properties by searching its state space. A model with a handful
of variables and two dozen statements can give rise to complex behavior that
strains the model-checking abilities of SPIN. For that reason PROMELA does
not include an extensive set of constructs for structuring the program and its
data; in particular, you will not find constructs like functions and classes that
facilitate the development of large programs. PROMELA does have arrays
and type definitions that are used for structuring data, and it has macros and
inline declarations that can help make programs more readable.

6.1 Arrays

In common with almost all programming languages, PROMELA includes the
array – a sequence of data values of the same type whose elements can be
accessed by providing an index giving the position of the element within the
sequence. The syntax and semantics of arrays are similar to those of C-like
languages; the first position in the array is at index zero and square brackets
are used for the indexing operation. It is an error if the index is not within
the bounds of an array: An error message will be printed during simulation
(without terminating the computation) and the error will be reported when
it is encountered during verification.

Arrays in PROMELA are one-dimensional; a workaround to this limitation
is presented in the next section.

Listing 6.1 shows a program to compute the sum of the elements of an ar-
ray of values of type int. The array a is declared and initialized by a sequence

96 6 Data and Program Structures

Listing 6.1. Computing the sum of the elements of an array of integer type

1 #include "for.h"

2 active proctype P() {

3 int a[5];

4 a[0] = 0; a[1] = 10; a[2] = 20; a[3] = 30; a[4] = 40;

5 int sum = 0;

6 for (i, 0, 4)

7 sum = sum + a[i]

8 rof (i);

9 printf("The sum of the numbers = %d\n", sum)

10 }

of assignment statements; then a counting loop is used to compute the sum
of the elements. The elements of an array can be initialized by a computation
from within a loop:

for (j, 0, 4)

a[j] = j * 10

rof (j)

perhaps by a nondeterministic expression:

for (j, 0, 4)

if
:: a[j] = j * 10

:: a[j] = j + 5

fi
rof (j)

An initial value in a declaration is assigned to all the elements of the array:

int a[5] = 10;

Warning

Arrays of type bit or bool are stored as arrays of type byte. If
you have a large array of bits and need to save memory, you can
encode them in bytes using shift and mask. An example of this is
given in Section 11.7.2.

6.2 Type definitions 97

6.2 Type definitions

Compound types are defined with typedef and are primarily used for defin-
ing the structure of messages to be sent over channels:

typedef MESSAGE {

mtype message;

byte source;

byte destination;

bool urgent

}

This point will be discussed further in Chapter 7.
An additional use of type definitions is to work around the PROMELA

limitation to one-dimensional arrays. A two-dimensional array is declared
as an array whose elements are of a type defined by a type definition with a
single array field:

typedef VECTOR {

int vector[10]

}

VECTOR matrix[5];

...

matrix[3].vector[6] = matrix[4].vector[7];

The syntax is the same as in C-like languages: brackets are used for indexing
an array and a dot for selecting a field within a compound type.

Listing 6.2 shows a program that uses type definitions to initialize and
print a sparse array.1 A sparse array is a data structure used to store an array
most of whose elements are known to be zero. For each nonzero element of
the array, its row, column, and value are stored. The program creates a data
structure for a sparse array and then prints out the entire array as a matrix of
rows and columns. It assumes that the elements are stored in lexicographic
order of the rows and columns.

The type definition ENTRY (lines 3–7) declares a structure of a single ele-
ment of a sparse array; the elements are stored in an array a whose elements
are of this type (line 8). Since it is not possible to assign a value of a defined
type to a variable of the type, we have to initialize the data structure field by
field (lines 12–15). (See Section 6.4 for a more readable way of doing this.)

The sparse array is printed within nested loops (lines 17–28), the outer
one for the rows and the inner one for the columns. The local variable i is
used as an index into the data structure that holds the elements of the sparse

1 See also the implementation of sparse arrays in the case study in Section 11.1.

98 6 Data and Program Structures

Listing 6.2. Data structure for a sparse array

1 #include "for.h"

2 #define N 4

3 typedef ENTRY {

4 byte row;

5 byte col;

6 int value

7 }

8 ENTRY a[N];

9

10 active proctype P() {

11 int i = 0;

12 a[0].row = 0; a[0].col = 1; a[0].value = -5;

13 a[1].row = 0; a[1].col = 3; a[1].value = 8;

14 a[2].row = 2; a[2].col = 0; a[2].value = 20;

15 a[3].row = 3; a[3].col = 3; a[3].value = -3;

16

17 for (r, 0, N-1)

18 for (c, 0, N-1)

19 if
20 :: i == N -> printf("0 ")

21 :: i < N && r == a[i].row && c == a[i].col ->

22 printf("%d ", a[i].value);

23 i++

24 :: else -> printf("0 ")

25 fi
26 rof (c);

27 printf("\n")
28 rof (r)

29 }

array. The if-statement for printing a single element has three alternatives:
(1) The first alternative (line 20) is used when we have printed out all non-
zero elements of the array, in which case the remaining elements are zero. (2)
The second alternative (lines 21–23) checks if the values of the loop variables
are equal to the row and column values of the current element of the sparse
array; if so, the value stored in the element is printed. (3) Otherwise, a zero
is printed in the third alternative (line 24). The output of this program is:

6.3 The preprocessor 99

0 -5 0 8

0 0 0 0

20 0 0 0

0 0 0 -3

The columns are not aligned because some numbers need two characters on
output. PROMELA does not support width specifiers as does C.

6.3 The preprocessor

SPIN is implemented in C, a language that not contain a mechanism for struc-
turing programs into modules; instead, interface declarations are contained
within files that are included within the source files that form the program.
Inclusion of source code is implemented by a compile-time software tool
called the preprocessor, which is called before the compiler itself is executed.
The preprocessor is also used to conduct text-based macro processing on the
source code. Text-based means that the preprocessor has no knowledge of the
syntax and semantics of the language, but instead treats the source code as
pure text.

When SPIN is run in any mode, it first calls a preprocessor, which is nor-
mally the same as the preprocessor associated with the compiler used to com-
pile the verifiers. We have already seen the use of the preprocessor to include
a file:

#include "for.h"

and to declare a symbol:

#define N 4

Declaring a symbol does not use memory because the definition is simply
substituted for the symbol before SPIN simulates the program or generates
the code for the verifier.

#define is also used for declaring symbols for expressions used in cor-
rectness specifications (Chapter 5):

#define mutex (critical <= 1)

The next two subsections survey advanced features of the preprocessor,
though in most cases, #define, #include, and the inline construct described
in the next section will be sufficient for writing models.

100 6 Data and Program Structures

6.3.1 Condition compilation∗

The preprocessor can be used to implement conditional compilation, which en-
ables the compile-time parameterization of a program. Suppose that a model
is to be verified under several different assumptions, for example, under
three different priority schemes. The following preprocessor code enables
different expressions to be used for the variable currentPriority simply by
defining one of the symbols VerOne, VerTwo, or VerThree with #define at the
beginning of the program:

#ifdef VerOne

currentPriority = (p1 > p2 -> p1 : p2);

#endif
#ifdef VerTwo

currentPriority = PMAX;

#endif
#ifdef VerThree

currentPriority = PMIN;

#endif

Symbols can also be defined using the -D argument on the SPIN command;
so, for example,

spin -DVerTwo pri.pml

would run SPIN on this program with the symbol VerTwo defined and thus
currentPriority set to PMAX. This is particularly useful when verifications
are run from a script, so that you do not have to edit the PROMELA source
code.

Another technique that can be used instead of conditional compilation is
to write a program (in any language) to generate PROMELA code for different
versions of the model. This is used, for example, in the software tool VN,
where a program written in JAVA generates PROMELA programs for finite
automata (Section 8.2).

6.3.2 Macros∗

#define is not limited to simple textual substitution of a string for a sin-
gle symbol; it can be used to create macros that can improve the readability
of PROMELA programs. For example, the macros for counting loops (Sec-
tion 1.7.1) are defined as follows:

6.4 Inline 101

#define for(I,low,high) \

byte I; \

I = low ; \

do \

:: (I > high) -> break \

:: else ->

#define rof(I) \

; I++ \

od

The backslash character denotes that the substitution text for the macro is
continued on the next line. Alternatively, you can define the entire macro on
one line.

Be careful what actual parameters you give when calling the macro.
Clearly, these macros are intended to be used with a variable name substi-
tuted for I. If by chance you call the for macro with j+1 as the first parame-
ter, you will get weird error messages caused by SPIN trying to decipher:

byte j+1;

Advanced: Debugging and changing the preprocessor
To debug macros, run SPIN with the argument -I; this will write to
standard output the results of performing the preprocessing.
You can use an alternate preprocessor by calling SPIN with the argu-
ment -P. This argument is also useful for giving the full path of the
preprocessor if SPIN cannot find it.
SPIN performs some elementary preprocessing operations itself, for
example, the replacement of defined symbols; therefore, problems
accessing the preprocessor will not manifest themselves unless ad-
vanced preprocessing features are used.

6.4 Inline

Although PROMELA does not have functions or procedures for structuring
code, it can be convenient to group statements together so that they can ap-
pear in several places in a program. This is done using the inline construct,
which gives a name to a sequence of statements. Listing 6.3 shows the use of
inline to write a “procedure” for printing the elements of an array.2 When-

2 The sequence of statements is contained within d_step because there is no mean-
ing to the internal states of the sequence and the statements can be executed deter-
ministically.

102 6 Data and Program Structures

ever the name of the inlined sequence is used within a proctype, the state-
ments between the braces are copied to the corresponding position before
compilation.

During the copy the formal parameters appearing after the name of the
inlined sequence are replaced by the actual parameters of the call. There is no
type declaration associated with the formal parameter because textual sub-
stitution is performed without any syntactical or semantic checking whatso-
ever. Any problems caused by the substitution will only be found during the
subsequent compilation of the resulting PROMELA source code.

Listing 6.3. Printing an array with inline

1 #include "for.h"

2 #define N 5

3

4 inline write(ar) {

5 d_step {

6 for (k, 0, N-1)

7 printf("%d ", ar[k])

8 rof (k);

9 printf("\n")
10 }

11 }

12

13 active proctype P() {

14 int a[N];

15 write(a);

16 for (i, 0, N-1)

17 a[i] = i

18 rof (i);

19 write(a)

20 }

inline is useful for initializing data structures. The readability of the pro-
gram for sparse arrays in Listing 6.2 can be improved by declaring an inline
for the initialization of the entries:

6.4 Inline 103

inline initEntry(I, R, C, V) {

a[I].row = R;

a[I].col = C;

a[I].value = V;

}

The statements for initializing the values of the array are now much easier to
write and read:

initEntry(0, 0, 1, -5);

initEntry(1, 0, 3, 8);

initEntry(2, 2, 0, 20);

initEntry(3, 3, 3, -3);

Warning

No new scope is created for an inline sequence!

Any variables declared within the sequence are equivalent to lo-
cal variables declared directly within the proctype where the se-
quence is called.

SPIN will print an error message when compiling the program in List-
ing 6.3 because both calls of the inline write declare the loop variable k. The
message can be ignored. Alternatively, the for-macro can be redefined not to
declare the variable, in which case the calling process becomes responsible
for its declaration.

Advanced: Inline vs. macros
The inline construct in SPIN is almost identical to the macro con-
struct, but its syntax is more “friendly” because there is no need to
use continuation characters. In addition, errors will be reported with
the line number within the inline construct, rather than with the line
of the call.

7

Channels

Distributed systems are computer systems consisting of a set of nodes con-
nected by communications channels. The most familiar distributed system is,
of course, the Internet, which consists of millions of computers connected
by communications networks implemented with wires, optical fibers and
microwave radio. Protocols such as TCP/IP and HTTP define how data are
moved between nodes of the network. The network itself is quite com-
plex, using computers to perform essential communications functions such
as routing, name lookup, and error correction. To model a distributed sys-
tem we abstract away details of the network and its protocols, and model
nodes as concurrent processes and communications networks as channels
over which processes can send and receive messages.

The most widely used formalism for modeling distributed systems is
called Communicating Sequential Processes (CSP), after a 1978 article by that
name, written by C.A.R. Hoare [11]. CSP was the inspiration for the commu-
nications constructs in several programming languages such as OCCAM and
ADA, as well as for the channel construct in PROMELA.

Warning

In CSP and OCCAM a channel is always associated with a pair of
processes; that is, exactly one process can send to each channel
and exactly one process can receive from a channel. In PROMELA

channels are global entities not associated with processes, so any
process can send a message on any channel and receive a message
from any channel. In fact, a process can send messages to and
receive messages from a single channel!

106 7 Channels

Throughout this chapter we will use a client-server system as a running
example. A number of processes called clients send requests to other processes
called servers. A server performs a service and can return a result to a client.

Since there are quite a few programs in this chapter for the client-server
example, we suggest that – while you read the text – you run simulations
and verifications on the source code from the software archives.

Channels are used extensively in the case studies in Chapter 11. For other
examples of distributed systems see SMC, which uses a telephone exchange
as its running example. There, channels model the communications lines be-
tween telephone subscribers and the exchange, and between the exchanges
themselves.

7.1 Channels in PROMELA

A channel in PROMELA is a data type with two operations, send and receive.
Every channel has associated with it a message type; once a channel has been
initialized, it can only send and receive messages of its message type. At most
255 channels can be created.

Listing 7.1 shows a model of a client-server system, where two clients are
connected to a single server through a channel called request. The channel
is declared with an initializer specifying the channel capacity and the message
type:

chan ch = [capacity] of { typename, ..., typename }

The channel capacity must be a nonnegative integer constant. The message
type specifies the structure of each message that can be sent on the channel
as a sequence of fields; the number of fields and the type of each field are
specified in the declaration. In the program in Listing 7.1, the capacity of the
channel is zero, while the message type consists of a single field of type byte.

There are two types of channels with different semantics: rendezvous chan-
nels of capacity zero and buffered channels of capacity greater than zero. In
subsequent sections we will discuss these separately.

Warning

The type of a message field cannot be an array; however, the type
can be a typedef (Section 6.2) and the typedef can contain an
array.

Syntactically, the send statement consists of a channel variable followed by
an exclamation point and then a sequence of expressions whose number and

7.1 Channels in PROMELA 107

Listing 7.1. Client-server using channels

1 chan request = [0] of { byte };

2

3 active proctype Server() {

4 byte client;

5 end:

6 do
7 :: request ? client ->

8 printf("Client %d\n", client)

9 od
10 }

11

12 active proctype Client0() {

13 request ! 0

14 }

15

16 active proctype Client1() {

17 request ! 1

18 }

types match the message type of the channel. The receive statement consists of
a channel variable followed by question mark and a sequence of variables.1

Semantically, the expressions in the send statement are evaluated and
their values are transferred through the channel; the receive statement as-
signs these values to the variables listed in the statement.

In the program in Listing 7.1, each client sents an integer value on the
channel (lines 13, 17); the server receives the values and assigns them to the
variable client (line 7).

Clearly, a receive statement cannot be executable unless a message is
available in the channel. Receive statements will frequently appear as guards
in an if- or do-statement, as shown in line 7 of Listing 7.1.

Note the use of the end label in the server; while it is reasonable for client
processes to send a number of requests and then terminate, a server process
never knows when it will be called upon to process a request, so it should
never terminate. The label ensures that an end state with the server blocked
on a receive statement is not considered invalid (see Section 4.7).

1 See Section 7.5 for the use of values and expressions in receive statements.

108 7 Channels

A bit of syntactic sugar for send and receive statements is supported: the
list of expressions ch!e1,e2,... can be written: ch!e1(e2,...). This is pri-
marily used when the first argument is an mtype, indicating the type of the
message. For example, given the declarations:

mtype { open, close, reset };

chan ch = [1] of { mtype, byte, byte };

byte id, n;

a send statement can be written in either of the following formats:

ch ! open, id, n;

ch ! open(id, n);

7.1.1 Channels and channel variables

The type of all channel variables is chan and a channel variable holds a refer-
ence or “handle” to the channel itself, which is created by an initializer. This
means that channel variables can appear in assignment statements or, more
commonly, as parameters to a proctype or inline:

chan ch1 = [0] of { byte };

chan ch2 = [0] of { byte, byte };

proctype P(chan c) {

c ! 5

}

init {

run P(ch1);

run P(ch2)

}

Since the message in a send statement must match the message type of the
channel, the send in the second instantiation of P causes a runtime, but not a
compile-time, error, demonstrating that the channel variable is not typed with
a message type.2

A channel can be sent in a message and received by another process; see
Listing 7.5 for an example.

Advanced: Local channels
Channels are usually initialized globally, though one can be de-
clared and initialized locally and then passed to another process in
a message. However, if a channel is declared and initialized within a
process and the process then dies, the channel is no longer accessible.

2 The error is currently not reported but this will be fixed in Version 5 of SPIN.

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };

2 chan ch = [0] of { mtype, byte, bool };

3

4 active proctype Sender() {

5 ch ! red, 20, false;
6 printf("Sent message\n")

7 }

8

9 active proctype Receiver() {

10 mtype color;

11 byte time;

12 bool flash;

13 ch ? color, time, flash;

14 printf("Received message %e, %d, %d\n",

15 color, time, flash)

16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

110 7 Channels

variables in the receive statement. The state change is shown in the following
diagram:

5: ch ! ...,

13: ch ? ...,

0, 0, 0

6: printf,

14: printf,

red, 20, false

-

In the state on the left, the location counter of process Sender is at the send
statement in line 5, while the location counter of process Receiver is at the
receive statement in line 13. The rendezvous that is offered by Sender can be
accepted by Receiver. The state that results from executing the rendezvous is
shown on the right. The location counters of both processes are incremented,
and, in addition, the values in the send statement are transferred to the corre-
sponding variables in the receive statement. The rendezvous is one atomic op-
eration; even if there were other processes, no interleaving could take place
between the execution of the send statement and the receive statement.

A send statement that offers to engage in a rendezvous for which there
is no matching receive statement is itself not executable, and similarly for an
executable receive statement with no matching executable send statement.
The process containing such a statement is blocked (unless, of course, there
are alternatives with true guards in an if- or do-statement).

In the client-server program in Listing 7.1, any of the three processes can
be executed first. If the client processes execute first, they will block on their
send statements request!0 (line 13) and request!1 (line 17) until the match-
ing receive statement in the server request?client (line 7) is executable.
Since both clients offer to engage in the rendezvous before the server exe-
cutes the receive statement, the choice between the two send statements is
made nondeterministically: randomly in random simulation mode, and in
verification mode, both choices are searched.

Similarly, if the server attempts to execute the receive statement before
either client offers to engage in a rendezvous, it is blocked. Since there are no
other alternatives in its do-statement, the entire process is blocked.

7.2.1 Reply channels

The program in Listing 7.1 is unrealistic because the clients receive no results
from the server, not even acknowledgements that the service has been suc-
cessfully carried out. Listing 7.3 shows a program with an additional channel
reply used by the server to return an acknowledgement to a client after per-
forming the service. Note the use of the anonymous variable denoted by an
underscore in lines 16 and 21; we are interested only in the receipt of the

7.2 Rendezvous channels 111

Listing 7.3. Client-server with a reply channel

1 chan request = [0] of { byte };

2 chan reply = [0] of { bool };

3

4 active proctype Server() {

5 byte client;

6 end:

7 do
8 :: request ? client ->

9 printf("Client %d\n", client);

10 reply ! true
11 od
12 }

13

14 active proctype Client0() {

15 request ! 0;

16 reply ? _
17 }

18

19 active proctype Client1() {

20 request ! 1;

21 reply ? _
22 }

message and not in its content, which is uniformly true. (Another example
of the use of the anonymous variable is given in Section 9.2.1.)

There is still a lack of realism in the program because, typically, there
are several servers that can service requests from a set of clients. Listing 7.4
shows a program with two servers and two clients; we have used the process
identifier _pid to identify both the clients and the servers.

Unfortunately, this program is not correct. The model is faithful to the
concept that the two servers should be independent of each other, as should
the two clients. However, we need to ensure that the client receiving the reply
sent by the server in line 11 is the same as the client who sent the request
that was received by the server in line 8. A few random simulations of the
program gave the following output that shows that each client received the
reply intended for the other:

112 7 Channels

Listing 7.4. Multiple clients and servers

1 chan request = [0] of { byte };

2 chan reply = [0] of { byte };

3

4 active [2] proctype Server() {

5 byte client;

6 end:

7 do
8 :: request ? client ->

9 printf("Client %d processed by server %d\n",

10 client, _pid);
11 reply ! _pid
12 od
13 }

14

15 active [2] proctype Client() {

16 byte server;

17 request ! _pid;
18 reply ? server;

19 printf("Reply received from server %d by client %d\n",

20 server, _pid)
21 }

Client 2 processed by server 1

Reply received from server 1 by client 3

Client 3 processed by server 0

Reply received from server 0 by client 2

The error can also be found by attempting to verify the program. Modify
line 11 so that the server returns to the client the ID that it received:

reply ! _pid, client;

Declare an additional local variable whichClient in each client to receive the
second message field sent by the server (line 18):

reply ? server, whichClient;

Now, add after line 20 an assertion that checks that the ID received from the
server is same as the _pid of the client that sent the request:

assert (whichClient == _pid);

7.2 Rendezvous channels 113

Listing 7.5. An array of channels

1 chan request = [0] of { byte, chan };

2 chan reply [2] = [0] of { byte, byte };

3

4 active [2] proctype Server() {

5 byte client;

6 chan replyChannel;

7 end:

8 do
9 :: request ? client, replyChannel ->

10 printf("Client %d processed by server %d\n",

11 client, _pid);
12 replyChannel ! _pid, client

13 od
14 }

15

16 active [2] proctype Client() {

17 byte server;

18 byte whichClient;

19 request ! _pid, reply[_pid-2];
20 reply[_pid-2] ? server, whichClient;

21 printf("Reply received from server %d by client %d\n",

22 server, _pid);
23 assert(whichClient == _pid)
24 }

SPIN quickly locates a computation that violates the assertion:

pan: assertion violated (whichClient==_pid) (at depth 8)

7.2.2 Arrays of channels

One way to fix the above error is to associate a separate reply channel with
each client. Listing 7.5 is similar to Listing 7.4 with several changes:

• The reply channel is changed to be an array of two channels (line 2), one
for each client.

• The messages on the request channels include a field of type chan for the
reply channel in addition to the field of type byte for the client ID (line 1).

114 7 Channels

• A client sends the reply channel associated with it (in addition to its
ID) (line 19) and a server receives the value and stores it in the variable
replyChannel (line 20).

• The server uses the received value of the reply channel to ensure that the
reply is sent to the correct client (line 12).

• The client waits for a reply on the channel associated with it (line 20).

Running a verification in SPIN shows that the assertion is never violated.
This program emphasizes that there is nothing special about channel val-

ues; they are only handles to the actual channel created in the initializer.
The use of _pid-2 to obtain the index of the channel in the client processess

(lines 19–20) is not a robust programming technique, because the _pid will
change if an additional process is declared before the client processes. The
software archive contains a version of this program where the IDs and indices
are passed as parameters of a run operator, and thus are less likely to need
modification.

7.2.3 Local channels

Rather than using a global array of channels, each client can declare its own
local channel. Delete line 2 in Listing 7.5 and replace lines 19–20 of the client
processes with

chan reply = [0] of { byte, byte };

request ! _pid, reply;

reply ? server, whichClient;

The channel will disappear when the client process dies.

7.2.4 Limitations of rendezvous channels

Normally, there are many more clients than servers. Think of well known
websites for search engines and online stores. They may have dozens or even
hundreds of servers, but they must serve requests from thousands of clients
simultaneously. If rendezvous channels were used, the number of clients ac-
tually being served can be no larger than the number of servers, so the rest
of the clients would be blocked. We can show this by counting the number of
clients in our program that have successfully sent the request but have yet to
receive the reply. With two servers and four clients, there can be at most two
clients in this state.

To see this, add a global variable numClients to the program in List-
ing 7.5; the variable will count the number of clients that have sent a request
but have yet to receive the result from the server. Replace the code for the
client process by

7.3 Buffered channels 115

active [4] proctype Client() {

byte server;

request ! _pid, reply[_pid-2];
numClients++;

assert (numClients <= 2);

numClients--;

reply[_pid-2] ? server

}

When a verification is performed, no errors are found, indicating that at most
two out of the four clients have reached that control point. The other two are
potentially blocked on the send statement.

7.3 Buffered channels

The solution to the problem in the previous section is to queue the requests
for service sent by the client in such a way that they do not block either the
client or the server.

A channel declared with a positive capacity is called a buffered channel:

chan ch = [3] of { mtype, byte, bool };

The capacity is the number of messages of the message type that can be
stored in the channel. The following diagram is similar to the one shown
in Section 7.2 for the program in Listing 7.2 except that a buffered channel is
used:

...
(green,20,false)

...
(red,10,false)

(green,10,true)

...
(color,time,flash)

...

?

-

Sender Receiver

The send and receive statements treat the channel as a FIFO (first in-first
out) queue. (Other versions of the send and receive statements are described
Sections 7.5–7.8.) The diagram shows the channel as it would appear if two
messages have already been sent to the channel; more precisely, it shows the
channel after two more messages have been sent than have been received. The
send statement is executable because there is room in the channel for another

116 7 Channels

message, that is, the channel is not full; executing the statement places the
message at the tail of the queue. The receive statement is executable because
there are messages in the channel, that is, the channel is not empty; executing
the statement removes the message at the head of the queue and assigns its
values to the variables in the receive command.

The channel is part of the states of the computation. The send and receive
statements are each executed atomically. The state diagram corresponding to
the one on page 110 is:

5: ch ! ...,

13: ch ? ...,

0, 0, 0,

[(red,10,false),

(green,10,true),

()]

6: printf,

13: ch ? ...,

0, 0, 0,

[(red,10,false),

(green,10,true),

(green,20,false)]

6: printf,

14: printf,

red, 10, false,

[(green,10,true),

(green,20,false),

()]

- -

The channel is shown as a triple [_,_,_] with space for three elements.
If we change the program in Listing 7.5 to use a buffered channel of ca-

pacity 4 and rerun the verification of the program described at the end of
Section 7.2.4, SPIN will find a computation in which numClients <= 2 is fal-
sified, as we would expect since none of the four senders can ever be blocked.

Another solution to this problem is given in Section 7.5.

Advanced: Lost messages when the channel is full

The semantics of the send statement can be changed by running SPIN

with the -m argument. Instead of blocking when the channel is full,
the send statement is executed but the content of the channel does
not change so that the message is lost.

7.4 Checking the content of a channel

Executing the normal send and receive statements commits a process to ei-
ther performing the operation on the channel or blocking until the statement
becomes executable. This may not be appropriate for modeling a system that
can perform other tasks when a channel operation is not executable.

7.4 Checking the content of a channel 117

Warning

The functions described in this section are allowed only for
buffered channels, because it makes no sense to talk about “the
number of messages” in a rendezvous channel.

7.4.1 Checking if a channel is full or empty

There are four predefined boolean functions for checking a channel: full and
empty, and their negations nfull and nempty.

Warning

The negations !full and !empty are not allowed in PROMELA,
so nfull and nempty must be used instead. The predefined func-
tions may unintentionally become negated in a never claim; if so,
you should modify the code of the claim itself.

Suppose that neither the clients nor the servers in the system should be
blocked on a channel; that is, the client should be able to do another computa-
tion if a channel is full, and, similarly, the server should be able to do another
computation if the channel is empty. This system is modeled in the program
in Listing 7.6, where “another computation” is modeled by the printf state-
ments in lines 9 and 21. The predefined boolean functions nfull and empty
are used in the guards of the do-statements to provide an executable alterna-
tive if the send or receive statements are not executable.3

Warning

Do not use else alternatives in if- or do-statements that have
channel expressions as their guards; instead, use the pairs
empty/nempty and full/nfull.

7.4.2 Checking the number of messages in a channel

There is a predefined integer function len(ch) that returns the number of
messages in channel ch. This is less useful than it may seem at first glance
because most models need only check the extreme cases of len(ch)==0 and
len(ch)==N (where N is the capacity of ch), for which the functions of the
previous subsection suffice. One example of its use is in a model of process

3 We have removed the end label because the program is nonterminating.

118 7 Channels

Listing 7.6. Checking if the channel is full or empty

1 chan request = [2] of { byte, chan};
2 chan reply[2] = [2] of { byte };

3

4 active [2] proctype Server() {

5 byte client;

6 chan replyChannel;

7 do
8 :: empty(request) ->

9 printf("No requests for server %d\n", _pid)
10 :: request ? client, replyChannel ->

11 printf("Client %d processed by server %d\n",

12 client, _pid);
13 replyChannel ! _pid
14 od
15 }

16

17 active [2] proctype Client() {

18 byte server;

19 do
20 :: nfull(request) ->

21 printf("Client %d waiting for non-full channel\n",

22 _pid);
23 :: request ! _pid, reply[_pid-2] ->

24 reply[_pid-2] ? server;

25 printf("Reply received from server %d by client %d\n",

26 server, _pid)
27 od
28 }

allocation: when the channel is more than three-quarters full, allocate more
server processes to service the overload, and when the channel is less than
one-quarter full, some processors can be deallocated:

if
:: len(ch) > (3*N/4) -> /* Allocate a new server */

:: len(ch) < (N/4) -> /* Deallocate a server */

:: else
fi

7.5 Random receive∗ 119

Use the functions empty, nempty, full, nfull instead of len whenever pos-
sible, because they can be used by the SPIN optimization called partial order
reduction (Section 10.2) to improve the efficiency of verifications.

7.5 Random receive∗

Buffered channels can be used to implement a different solution to the client-
server problem (Listing 7.7), in which the array of four reply channels has
been replaced by a single channel of capacity four (line 2). The message sent
on the reply channel (line 11) contains the server ID, as well as the ID of the
client that was received from the request channel (line 8). We need to ensure
that it is possible for a client to receive only messages meant for it, but this
cannot be done with the channel statements as we have defined them so far.

Listing 7.7. Random receive from a buffered channel

1 chan request = [4] of { byte };

2 chan reply = [4] of { byte, byte };

3

4 active [2] proctype Server() {

5 byte client;

6 end:

7 do
8 :: request ? client ->

9 printf("Client %d processed by server %d\n",

10 client, _pid);
11 reply ! _pid, client

12 od
13 }

14

15 active [4] proctype Client() {

16 byte server;

17 request ! _pid;
18 reply ?? server, eval(_pid);
19 printf("Reply received from server %d by client %d\n",

20 server, _pid)
21 }

120 7 Channels

The first problem is that channels are FIFO, so even if a channel contains
a message for a certain client, the client cannot receive the message until all
messages ahead of it in the queue have been removed from the channel. To
solve this problem we can use the PROMELA statement called random receive,
which receives messages from anywhere within the channel, not just at the
head; it is denoted by the double question mark as shown in line 18.

The second problem is that the receive statement removes a message re-
gardless of its content and assigns the values to the variables in the statement.
Here it is required that a client remove only messages intended for itself. To
solve this problem the receive statement allows values to be used instead of
variables. A receive statement is executable if and only if its variables and
values match the values in the fields of a message. A variable matches any
field whose value is of the correct type, but a value matches a field if and
only if it equals the value of the field. When the message is received, it is
removed from the channel and values are assigned to the variables in the
statement; of course, there is no meaning to assigning values to values.

A random receive statement will remove the first message that matches
the variables and values in the statement. If the value to be matched is known
when the program is written (for example, the client ID is a constant), it can
be used directly:

reply ?? server, 3

But sometimes the value is known only at runtime, for example, when it
is the value of a parameter to the proctype, or, as in this case, when it is
the value of _pid that is different for each instantiation of the proctype. In
these cases, eval is used to obtain the current value of the variable to use in the
matching (line 18):

reply ?? server, eval(_pid)

This ensures that only messages intended for this client are matched and are
removed from the channel.

The name “random receive” is misleading because there is nothing at all
that is random or even nondeterministic about the statement: it is executable
if a matching message exists, and if it is executed, the first matching message
is received.

Another example of the use of random receive is given in Section 11.3.

7.6 Sorted send∗ 121

Listing 7.8. Storing values in sorted order

1 chan ch = [3] of { byte };

2

3 inline getValue() {

4 if
5 :: n = 1

6 :: n = 2

7 :: n = 3

8 fi
9 }

10

11 active proctype Sort() {

12 byte n;

13 getValue();

14 ch !! n;

15 getValue();

16 ch !! n;

17 getValue();

18 ch !! n;

19 ch ? n;

20 printf("%d\n", n);

21 ch ? n;

22 printf("%d\n", n);

23 ch ? n;

24 printf("%d\n", n)

25 }

7.6 Sorted send∗

A send statement for a buffered channel inserts the message at the tail of
the message queue in the channel. With the sorted send statement, written
ch!!message with a double exclamation point, the message is inserted ahead
of the first message that is larger than it. Fields of the message are interpreted
as integer values, and if there are multiple fields, lexicographic ordering is
used. Sorted send can be used to model a data structure such as a priority
queue. The program in Listing 7.8 prints three values in sorted order, even
though they are generated nondeterministically. For another example of the
use of sorted send, see Section 11.3.

122 7 Channels

7.7 Copying the value of a message∗

Sometimes we are interested in copying the values in a message without
removing the message from the channel. The following statements copy the
values of a message into the three variables but does not remove it:

ch ? <color, time, flash>

ch ?? <color, time, flash>

This statement is distinguished from normal and random receive statements
by the use of angle brackets to enclose a list of variables. Copying without
removing is useful when channels are used to implement data structures, as
described in Section 11.1.

7.8 Polling∗

Real-time systems are built in two architectural styles:

• In an interrupt-driven system, a sensor causes an interrupt of the CPU
whenever data are ready to be read.

• In a polling system, sensors are periodically checked by the CPU to see if
data are ready to be read.

Interrupt-driven systems are modeled with blocking receive statements. To
model polling systems, PROMELA supports polling receive statements. Only
buffered channels can be polled.

Polling receive statements are not the same as receive statements that do
not remove messages from a channel:

ch ?? <green, time, false>

Although the message is not removed from the channel, copying values into
the variables creates a side-effect so the statement cannot be used in a guard.
A polling expression (written with square brackets) is side-effect free and can
be used in a guard:

do
:: ch ?? [green, time, false] ->

ch ?? green, time, false
:: else -> /* Do something else */

od

It can also be used in a subexpression of a compound expression, as shown
in the following code where we check the channel only on even-numbered
executions of the loop body:

7.9 Comparing rendezvous and buffered channels 123

bool even = true;

do
:: even && ch ?? [green, time, false] ->

ch ?? green, time, false;
even = !even

:: else ->

/* Do something else */

even = !even

od

Since the evaluation of a guard and the execution of the first statement
after the guard are two separate atomic operations, if other processes also
receive from the channel, it is possible that the poll statement

ch ?? [green, time, false]

will be true, but that due to interleaving, the receive statement

ch ?? green, time, false

will no longer be executable. This can be solved by placing the do-statement
within atomic.

7.9 Comparing rendezvous and buffered channels

The choice between using rendezvous or buffered channels in a model de-
pends on several factors, so the analysis of the tradeoffs between them is a
significant aspect of modeling a system.

Rendezvous channels are far more efficient. There is no “variable” associ-
ated with a rendezvous channel, so using one does not increase the size of a
state. Buffered channels, on the other hand, greatly increase the potential size
of the state space because every permutation of messages up to the capacity
of the channel might occur in a computation, and the messages themselves
can have multiple fields. Furthermore, rendezvous channels are unique in
that a single step of a computation causes changes in values of the location
counters of more than one process.

In a sense, a buffered channel is just a convenience because it could be im-
plemented with rendezvous channels and an additional process to store the
contents of the channel. Programming languages like OCCAM and ADA take
precisely this approach and support only communication by rendezvous.
However, the convenience of using buffered channels contributes signifi-
cantly to the ease of constructing models. They facilitate modeling communi-

124 7 Channels

cations systems that contain channels that can store messages. Buffered chan-
nels also enable direct modeling of asynchronous systems where processes
transfer data without blocking.

When a buffered channel is used in a model, the channel capacity must be
carefully considered. A large capacity may be more realistic, but can cause an
explosion in the size of the state space that can make verification impractical.
Section 11.8 gives an example of how to choose the channel capacity to enable
verification.

8

Nondeterminism∗

Nondeterminism is a concept that appears in many areas of computer sci-
ence such as automata theory, algorithms, and concurrency. It is a difficult
concept to learn because we intuitively think of computers as carrying out
instructions in a step-by-step deterministic fashion. This is apparent when
one considers the cliché that compares an algorithm to a cooking recipe; one
hardly expects a recipe to include instructions like “chop the onions finely or
coarsely” or “heat the oven to 180 or 220 degrees”!

In this chapter we stray somewhat from our introduction to SPIN as a
model checker in order to show how SPIN can be used to facilitate learning
about nondeterminism. SPIN is an excellent tool for this purpose, both be-
cause of the nondeterministic constructs in the PROMELA language and be-
cause of the nondeterministic nature of simulations. Furthermore, SPIN itself
is based upon the theory of automata, as we discuss in Chapter 10.

First we show how to write a PROMELA program to simulate a nondeter-
ministic finite automata (NDFA); then, we describe VN, a software tool that
generates and runs PROMELA programs that model NDFAs. The last section
relates NP problems to simulation and verification in SPIN. This chapter
necessarily presumes familiarity with these concepts that are taught as part
of the undergraduate curriculum in computer science.

Two additional nondeterministic algorithms are given in the case studies
in Section 11.2.

8.1 Nondeterministic finite automata

Figure 8.1 shows an NDFA that accepts the language defined by the regular
expression a∗((bb)+ + bc∗): zero or more occurrences of a followed by either
one or more occurrences of bb, or one occurrence of b followed by zero or

126 8 Nondeterminism∗

Fig. 8.1. NDFA accepting a∗((bb)+ + bc∗)

more occurrences of c. The automaton remains in state q0 as long as there are
occurrences of a in the input; when a b is encountered, it nondeterministi-
cally chooses to take the transition to q1 or the transition to q3. From q1, the
automation can loop between q1 and q2 to accept (bb)+; from q3, it can loop
back to q3 to accept bc∗.

Listing 8.1 shows the translation of the NDFA into PROMELA. The input
string "aabb." is given as the initial value of the array i (lines 6–7), and each
state is implemented by an if-statement whose alternatives are the possible
transitions from that state (lines 8–23). A transition is modeled by a goto-
statement that refers to the label of the if-statement representing the target
state of the transition. The nondeterminism in state q0 is readily apparent
from the two identical guards that evaluate to true if the input character is
’b’ (lines 10–11).

States q2 and q3 are final states, so if the end of the input denoted by a
period is reached in those states, control transfers to the label accept and a
message is printed.1

What happens if the input string is rejected? By definition, an input string
is rejected if the end of the input has not been reached and there is no transi-
tion for the current symbol; in that case, there are no executable alternatives
in the if-statement and the process blocks. Similarly, an automaton rejects

1 The label accept (line 24) is natural in the context of NDFAs, but it is not a good
choice of name in the context of a PROMELA program because of the special mean-
ing it has (see Section 10.3).

8.1 Nondeterministic finite automata 127

Listing 8.1. Nondeterministic finite automaton for a∗((bb)+ + bc∗)

1 #define LEN 5

2

3 active proctype FA() {

4 byte h;

5 byte i[LEN];

6 i[0] = ’a’; i[1] = ’a’; i[2] = ’b’; i[3] = ’b’;

7 i[4] = ’.’;

8 q0: if
9 :: i[h] == ’a’ -> h++; goto q0

10 :: i[h] == ’b’ -> h++; goto q1

11 :: i[h] == ’b’ -> h++; goto q3

12 fi;
13 q1: if
14 :: i[h] == ’b’ -> h++; goto q2

15 fi;
16 q2: if
17 :: i[h] == ’b’ -> h++; goto q1

18 :: i[h] == ’.’ -> goto accept

19 fi;
20 q3: if
21 :: i[h] == ’c’ -> h++; goto q3

22 :: i[h] == ’.’ -> goto accept

23 fi;
24 accept:

25 printf("Accepted!\n")
26 }

a string if it is not in a final state when the end of the input is reached; but
the ’.’ character is read only in final states, so in this case, too, the process
blocks. Since there is only one process, the entire computation blocks, and
SPIN will terminate with the message timeout.

This PROMELA program was generated automatically by the VN soft-
ware tool from a file describing the states and transitions of an automaton
(see Section 8.2 and Appendix A.4).

128 8 Nondeterminism∗

8.1.1 timeout

In SPIN, occurrences of a timeout state can be detected. The predefined
boolean variable timeout is true if and only if there are no executable state-
ments in any process. It is convenient to look upon timeout as similar to a
global else: While else is executable when there are no executable guards
in the enclosing if- or do-statement, timeout is executable when there are no
executable statements anywhere in the program.

By detecting a timeout, we can arrange to print a message when an input
string is rejected. We add an additional process Watchdog that contains just
one guarded statement:

active proctype Watchdog() {

timeout -> printf("Rejected ...\n")

}

The guard – the expression timeout – will not become executable until the
main process is blocked; then it will become executable and the printf state-
ment, which is always executable, will print the message that the input is
rejected.

The expression timeout is discussed further in Section 4.7 on the termi-
nation of processes, and in Section 11.3 where it is used to model discrete
time.

8.1.2 Using verification to find accepting computations

Random simulation is not a good way of investigating NDFAs. An NDFA
accepts an input string if there exists a computation that terminates in a final
state, so it may be necessary to run a simulation dozens of times to get an
accepting computation, and if one is not obtained it does not mean that one
does not exist.

In verification mode SPIN performs a search over all possible ways of
resolving nondeterminism. To check if an NDFA accepts an input string, ver-
ify the program with assert(false) placed at the end of the process FA. If
there exists an accepting computation of the NDFA, then there exists a com-
putation of the PROMELA program in which the process terminates. SPIN

will find this computation as a counterexample to the claim that false is
true, and from the trail the computation can be reconstructed. If there really
are no accepting computations of the NDFA, there are no computations in
which the program terminates, and SPIN will report that no errors have been
be detected during the verification.

The verifier must be run with the -E argument as described in Sec-
tion 4.7.2. If a timeout occurs, the Watchdog process will print Rejected and

8.1 Nondeterministic finite automata 129

then terminate, but the process FA remains blocked and does not terminate;
this is an invalid end state that is not a counterexample that we want from
the verifier.

8.1.3 Finding all counterexamples

Suppose that we want to find all inputs of length four that lead to accepting
computations in the NDFA of Figure 8.1. This is easy enough to arrange by
selecting the elements of the input string nondeterministically:

inline Input(n) {

if
:: i[n] = ’a’

:: i[n] = ’b’

:: i[n] = ’c’

fi
}

active proctype FA() {

byte h;

byte i[LEN];

Input(0); Input(1); Input(2); Input(3);

i[4] = ’.’;

. . .

}

SPIN is optimized for finding the first counterexample, but it is possible to
request that it find all of them. Run the verifier with the following arguments:

pan -E -c0 -e

The argument -c0 requests the verifier to keep searching even if errors have
been found, and the argument -e requests the verifier to write trail files for
all errors. For the modified program (in file fa1.pml), we find that there are
six counterexamples; the trail files will be named fa1.pmlN.trail, where N

goes from 1 to 6. To run a guided simulation with a specific trail file, add its
number to the -t argument:

spin -t4 fa1.pml

By examining the output, we can determine that the six inputs of length four
that have accepting computations are:

aaab, aabb, aabc, abcc, bbbb, bccc

130 8 Nondeterminism∗

Fig. 8.2. NDFA with λ transitions accepting a∗((bb)+ + bc∗)

8.1.4 λ-transitions

An alternate NDFA for a∗((bb)+ + bc∗) is shown in Figure 8.2. It is the NDFA
that would be obtained by separately constructing NDFAs for (bb)+ and bc∗,
and then concatenating them with the trivial automaton for a∗. This NDFA
has λ-transitions,2 which are transitions that can be taken without reading a
character from the input. In this NDFA the λ-transitions are used to nonde-
terministically choose whether to continue looking for a’s or to start looking
for the first b. We leave it to the reader to write a PROMELA program for this
NDFA.

2 These are also called ε-transitions.

8.2 VN: Visualizing nondeterminism 131

Fig. 8.3. Rejecting path in VN

8.2 VN: Visualizing nondeterminism

VN is a software tool for visualizing the nondeterminism of an NDFA. Fig-
ures 8.3–8.4 show screenshots of VN with the state diagram for an NDFA
displayed in the left pane.3 The NDFA in the figures is for the language ambn,
such that m ≥ 2, n ≥ 0, and both m and n are divisible by two or three.4

The design of VN is described in Appendix A.4. The NDFA is read from
a file in the format that is written by JFLAP [18], which is an interactive
software tool for studying formal languages and automata. An input string,
such as aabbbb, is entered in the text field on the toolbar and Generate se-
lected. This causes a PROMELA program similar to the one in Listing 8.1 to
be generated. The program can now be run in several modes based upon the
modes of SPIN:

Random – SPIN executes the program in random simulation mode. A single
computation is created by randomly resolving the nondeterminacy.

Create – SPIN executes the program in interactive simulation mode, so that
you can interactively resolve each nondeterministic choice.

3 The λ-transitions are denoted by the letter L.
4 This NDFA is example 1.3 from [18].

132 8 Nondeterminism∗

Fig. 8.4. An accepting path in VN

Find – The assertion assert(false) is added to the end of the generated
program and a verification is performed. If a counterexample is found,
it indicates that an accepting computation of the NDFA exists. A guided
simulation run with the trail creates this computation.

Next – The verifier is run again to search for the next counterexample, if any.

Figure 8.3 shows a rejecting computation obtained by a random simulation,
while Figure 8.4 shows an accepting computation obtained by verification.

An accepting or rejecting computation is displayed in three ways:

• The list of the states and the input symbols that caused each transition is
displayed in a text field beneath the toolbar.

• The path is displayed in the right pane.
• States and transitions in the path are emphasized in the diagram of the

NDFA in the left pane.

The list in the text field and the path in the right pane display the entire
computation which may visit the same state many times. In the left pane a
state or transition is emphasized only once; the purpose of this display is to
enable you to trace the computation through the NDFA.

8.3 NP problems 133

By entering a number instead of an input string in the text field in the
toolbar, Find and Next will display all accepting computations for all input
strings whose length is less than or equal to the value entered in the field.

Experiment with input strings of various lengths to get a feel for how of-
ten a random simulation of the NDFA leads to an accepting computation for
an input string. Compare this with the time its takes for a SPIN verification
performed during Find to carry out an exhaustive search in order to find an
accepting computation. For example, I performed one hundred random sim-
ulations for the input string a9b8 and they were all rejecting, but an accepting
computation was obtained within a couple of seconds by selecting Find.

8.3 N P problems

An algorithmic problem is in the class P if it can be solved by a determin-
istic algorithm in polynomial time; that is, its running time is a polynomial
function of the length of the input. A problem is in the class NP if it can
be solved by a nondeterministic algorithm in polynomial time. The definition
of nondeterminism here is similar to that of NDFAs: a nondeterministic al-
gorithm solves a problem if, given any input, there exists a computation that
produces the correct answer.

Consider a formula in the propositional calculus such as

A = (a ∨ c) ∧ (¬a ∨ ¬c) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (b ∨ ¬c) ∧ (¬b ∨ ¬c).

Let v be an assignment of truth values to the atomic formulas of A:

v(a) = T, v(b) = T, v(c) = F.

It is trivial to check that the truth value of A is in fact true under the assign-
ment v simply by substituting the values from v into A and computing the
truth value of A using the truth tables for the propositional operators ∨ and
∧. Thus, there is an efficient algorithm for solving the following problem:
Given an arbitrary formula A of the propositional calculus and an arbitrary
assignment v, is A true under v? The algorithm runs in time that is polyno-
mial in lengths of A and v, so the problem is in the class P .

Consider now a different problem: Given an arbitrary formula of the
propositional calculus A, is A satisfiable, that is, does there exist an assign-
ment v that makes A true? This problem is called the satisfiability problem
for the propositional calculus (SAT). It is easy to see that SAT is in NP : Gen-
erate an assignment nondeterministically and then check if it satisfies the
formula. Clearly, generating an assignment v takes very little time, and we

134 8 Nondeterminism∗

have shown that checking the truth of A under a given assignment is also
efficient. If a formula is satisfiable, there exists a computation that returns the
answer true, and if not, no computation returns true. We conclude that there
is a polynomial-time nondeterministic algorithm for SAT, thus the problem
is in the class NP .

The PROMELA program in Listing 8.2 uses a nondeterministicif-statement
to generate an assignment and then computes the truth value of the formula
A given above. By running half a dozen random simulations of this program,
the above assignment v for which A is true was obtained.

Listing 8.2. Satisfiability in the propositional calculus

1 active proctype P() {

2 bool a, b, c, result;

3

4 if :: a = true :: a = false fi;
5 if :: b = true :: b = false fi;
6 if :: c = true :: c = false fi;
7

8 result =

9 (a || c) && (!a || !c) &&

10 (a || !b) && (!a || b) &&

11 (b || !c) && (!b || !c);

12

13 printf("a = %d, b = %d, c = %d, result = %d\n",

14 a, b, c, result)

15 }

A slight modification of the formula A (removing the final ¬) gives the
formula A′:

A′ = (a ∨ c) ∧ (¬a ∨ ¬c) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (b ∨ ¬c) ∧ (¬b ∨ c)

that is unsatisfiable, that is, A′ is a formula whose truth value is false under
all assignments. No matter how many random simulations we run, we will
never get that result is true, but we can never be sure that all possible as-
signments have been tried.

Only verification can give us the definitive answer that A′ is unsatisfiable
by checking its truth value under all assignments. In the program in List-

8.3 NP problems 135

ing 8.2, remove the negation on the second occurrence of c in line 11 and add
the statement

assert (!result)

at the end of the program. Running SPIN in verification mode reports that
there are no errors, meaning that regardless of the choices made in the non-
deterministic statement (lines 4–6), the expression !result is always true. We
conclude that the formula is unsatisfiable.

Add assert (!result) to the program with the satisfiable formula A
and run a verification. Now, there will be choices for the values of the vari-
ables a, b, c for which the value of the variable result is true. This falsifies
the expression !result, so SPIN will report an error and a guided simulation
with the trail will produce the assignment.

Verification is a purely deterministic algorithm because SPIN systemat-
ically generates and checks all possible states for errors. The verification
algorithm in SPIN demonstrates that any nondeterministic algorithm can be me-
chanically transformed into a deterministic one: instead of choosing nondeter-
ministically among several alternatives, execute the algorithm for all possible
choices. Unfortunately, this is highly inefficient. It is easy to see that given n
variables, there are 2n different sets of choices for assigning truth values to
them, and all of these must be checked. If the formula happens to be un-
satisfiable, the algorithm does not terminate until it has checked all possible
assignments.

The software archive accompanying this book contains PROMELA pro-
grams for checking the satisfiability of formulas with a large number of vari-
ables. Try running simulations and verifications on them and experience the
difference in running time. You will find that random simulations run very
quickly even for a program with a large number of variables, but as the num-
ber of variables increases much above 20, verification becomes impracticable.
Methods for optimizing verification runs are discussed in Section 10.2.

Is SAT in P? That is a million-dollar question. Literally! The question
P = NP? – is there a deterministic polynomial algorithm for any problem
solvable by a nondeterministic polynomial algorithm – is so difficult and so
fundamental that it is on the list of the Millennium Problems compiled by the
Clay Mathematics Institute which offers a prize of one million dollars for the
solution of any of the problems.5

The difference between random simulation and verification brings to life
the concept of a problem in NP . Simulation efficiently “guesses” an answer
nondeterministically and then checks if it is correct, while verification can

5 claymath.org.

136 8 Nondeterminism∗

find an answer deterministically if one exists. SPIN performs verification us-
ing a relatively inefficient exhaustive search, but no one knows if there is a
deterministic algorithm that is significantly more efficient than the exhaus-
tive search.

Advanced: Generation of the unsatisfiable formulas
The unsatisfiable formulas were automatically generated from
graphs according to a procedure developed by G.C.Tseitin (see Sec-
tion 4.4 of MLCS). In the archive are PROMELA programs correspond-
ing to the complete bipartite graphs K3,3, K4,4, and K5,5 with 9, 16, and
25 variables, respectively. For the first two programs both simulation
and verification run very fast. For the third program the computation
in simulation mode terminates immediately, but verification is be-
yond the capability of my computer. For the experiments described
in Section 10.2, I used a version of the third program with only 23
variables that was obtained by removing the literals corresponding
to two edges of K5,5.

9

Advanced Topics in PROMELA∗

This chapter surveys constructs of PROMELA that are used less often than the
ones that have been discussed. The intent is to bring them to the attention of
the reader, rather than to explain their use in detail. For more information see
SMC and the man pages.

9.1 Specifiers for variables

Certain specifiers can be applied to the declarations of variables. They must
be used with care since they affect the way that variables are treated during
verification.

hidden If a global variable is specified as hidden, its value will not be part of
the states of the computation. It is an alternative to the use of the anony-
mous variable _ described below.

local Specifying that a global variables is local indicates to SPIN that the
variable is accessed by only one process. The only reason you would de-
clare a variable used by one process to be global is to enable it to be used
in a never claim (Section 10.3); adding the local specifier can then enable
optimization.

xr, xs These specifiers can be applied to a channel variable and specify that
a process has exclusive receive (xr) or exclusive send (xs) access to the
channel. This information is then used to optimize verification. The spec-
ifiers cannot be used within a process type that is instantiated more than
once because that would violate the exclusivity, nor can they be used for
rendezvous channels.

show The specifier show is used with the XSPIN environment (SMC, Chap-
ter 12).

138 9 Advanced Topics in PROMELA∗

9.2 Predefined variables

PROMELA has several predefined variables, some of which we have encoun-
tered before. Predefined variables and functions that are intended for use
only in never claims are described in Section 10.3.4.

9.2.1 The anonymous variable

There is a single predefined global anonymous variable written as an under-
score _. The variable replaces “dummy” variables used in other languages,
and has the advantage that its value is not part of the states of a computation,
so no memory is required to store it during a verification. The most common
use is in receive statements, where the values of some or all of the message
fields are not needed (see Listing 7.3).

Another example of the use of the anonymous variable is shown in the
PROMELA solution for the dining philosophers problem taken from Sections 8.4–
8.5 of PCDP and shown in Listing 9.1. Both the philosophers and the forks
are modeled by processes that communicate over channels. There is one
channel for each fork. A process Phil waits to receive messages from two
forks (lines 6–7) and replies on the same channels when it has finished eating
(lines 9–10). In a process Fork, if the fork is in use the process is blocked on its
receive statement (line 17); this ensures mutual exclusion. The channels are
used just for synchronization and not to pass data; since the messages have
no content and are always true, anonymous variables can be used.

This solution is not correct because it can deadlock.

9.2.2 Process identifiers

The predefined variable _pid is read-only and local to each process; it gives a
unique number to each process as it is instantiated. The variable is of type pid
and takes values from 0 to 254 (not 255). Section 3.5 showed how to use _pid
to identify processes that are created by active proctype and so cannot be
initialized from parameters.

The predefined variable _nr_pr is read-only and global; its value is the
number of active processes. In Section 3.5 we used the expression

(_nr_pr == 1)

in the init process to wait for the termination of all other processes.

9.2 Predefined variables 139

Listing 9.1. Solution of the dining philosophers problem

1 chan forks[5] = [0] of { bool };

2

3 proctype Phil(byte n; chan left; chan right) {

4 do
5 :: printf("Philosopher %d is thinking\n", n);

6 left ? _;
7 right ? _;
8 printf("Philosopher %d is eating\n", n);

9 right ! true;
10 left ! true
11 od
12 }

13

14 proctype Fork(chan ch) {

15 do
16 :: ch ! true;
17 ch ? _
18 od
19 }

20

21 init {

22 atomic {

23 run Fork(forks[0]);

24 run Fork(forks[1]);

25 run Fork(forks[2]);

26 run Fork(forks[3]);

27 run Fork(forks[4]);

28 run Phil(0,forks[0],forks[1]);

29 run Phil(1,forks[1],forks[2]);

30 run Phil(2,forks[2],forks[3]);

31 run Phil(3,forks[3],forks[4]);

32 run Phil(4,forks[4],forks[0]);

33 }

34 }

140 9 Advanced Topics in PROMELA∗

9.3 Priority

9.3.1 Simulation priority

A priority for a process can be specified either on an active proctype dec-
laration or on a run statement that instantiates a process type declared by
proctype:

active proctype Important(...) priority 10 {

...

}

proctype NotImportant(...) {

...

}

run NotImportant(...) priority 2;

However, this priority is not the same as the familiar hierarchal priorities
of operating systems, where a process will not be executed if a process with
a higher priority is ready. In SPIN priority is meaningful only in random
simulation mode; the specification priority 10 for a process simply means
that this process is ten times more likely than a process with default priority
1 to be chosen for execution.

9.3.2 Modeling priority with global constraints

It is possible to model simple hierarchal priority schemes in PROMELA us-
ing provided. This specification is attached to a proctype declaration and
includes the keyword provided followed by an expression; the expression
becomes an additional guard on all the statements of the process:

bool ok;

proctype P(...) provided (ok) {

...

}

If another process sets the variable ok to false at any time, process P will no
longer be selected for execution during a simulation, and states obtained by
executing a statement from P will no longer be searched during a verifica-
tion. Only when a process resets ok to true, will statements from P become
executable.

9.3 Priority 141

Listing 9.2. Modeling an interrupt handler with provided

1 byte n = 0;

2 bool interrupt = false;
3

4 proctype Compute() provided (!interrupt) {

5 n = n + 1

6 }

7

8 proctype Interrupt() {

9 byte temp;

10 interrupt = true;
11 temp = n + 1;

12 n = temp;

13 interrupt = false
14 }

15

16 init {

17 atomic {

18 run Interrupt();

19 run Compute()

20 }

21 (_nr_pr == 1);

22 assert (n == 2)

23 }

An interesting example of the use of provided is in a model that demon-
strates priority inversion, which is an unexpected behavior in priority-driven
systems that actually occurred in the computer system of the Mars Pathfinder
spacecraft. The model also demonstrates priority inheritance, which is a mech-
anism for avoiding priority inversion. This example is discussed in depth in
SMC, Chapter 5, and in PCDP, Sections 13.7 and 13.8.

Listing 9.2 shows a simple model of an interrupt handler which is to
have a higher priority than “ordinary” computation. The program is com-
posed of a process Compute that models the ordinary computation, and a
process Interrupt that models the interrupt handler. The handler sets a
flag interrupt upon entry (line 10) and resets it upon exit (line 13). The
provided specification (line 4) ensures that the increment instruction in
process Compute cannot be executed while the interrupt handler is executing;

142 9 Advanced Topics in PROMELA∗

Listing 9.3. Handling division by zero

1 active proctype Divide() {

2 int n = 1;

3 end:

4 do
5 :: {

6 ch ? n;

7 printf("%d\n", 100 / n)

8 } unless {

9 n == 0 ->

10 printf("Attempt to divide by zero\n")

11 }

12 od
13 }

therefore, the instruction n = n + 1 in line 5 cannot have its execution in-
terleaved between the instructions temp = n + 1 and n = temp on lines 11
and 12.

First, run a verification without the provided specifier. SPIN will report
an error: the violation of the assertion in line 22, which was caused by the
interleaving described above. Replace the provided specifier and the error
disappears because the specifier prevents the interleaving.

The use of provided should be avoided, if possible, because SPIN cannot
perform the partial order reduction optimization when it is used.

9.4 Modeling exceptions

Exceptions are unexpected runtime states. Modern programming languages
have a construct such as try-catch to enable an exception handler to be as-
sociated with a sequence of statements so that the occurrence of an exception
within the sequence can be caught and handled. In PROMELA an unless-
block can be associated with a statement or sequence of statements and is ex-
ecuted only if its guard (the first statement in the block) becomes executable.

Listing 9.3 shows a process that receives a sequence of int values from a
channel (line 6) and uses each value as a divisor (line 7); an unless-block is
used to avoid division by zero: Before each statement in the block is executed,
the guard of the unless is checked (line 9). If a zero value is received, the

9.6 Embedded C code 143

guard n == 0 becomes true and the error message is printed instead of the
division being executed.

In many cases, the same effect can be obtained more simply by using an
if-statement:

ch ? n;

if
:: n == 0 ->

printf("Attempt to divide by zero\n")

:: else ->

printf("%d\n", 100 / n)

fi

The unless construct should be reserved for situations where an event
can occur at arbitrary points within the computation. See Figure 3.1 of SMC
for an example: in a model of a telephone exchange, the system must always
be able to handle the event that occurs when a subscriber hangs up, and this
can occur at any time during a call.

9.5 Reading from standard input

There is a predefined read-only channel called STDIN which is connected to
standard input. It can be useful in controlling simulations interactively, or
to run a sequence of simulations parameterized by data from a file as an
alternative to using conditional compilation (Section 6.3.1):

byte version;

STDIN ? version;

currentPriority = (

(version == 1) ? (p1 > p2 -> p1 : p2) :

(version == 2) ? PMAX :

PMIN);

9.6 Embedded C code

PROMELA is designed as a language for modeling systems that are to be ver-
ified by SPIN; it is very limited in its expressiveness in order that verification
be efficient. Once a model has been verified, it must then be translated into a
program in an ordinary programming language for execution on a real sys-
tem; in addition, parts of the system that were not modeled must be imple-
mented. There is a real possibility that the transition from model to program

144 9 Advanced Topics in PROMELA∗

can introduce errors. An active field of research is to try to extend model
checking techniques to real programs.

As a step in that direction, SPIN can simulate and verify PROMELA mod-
els with embedded C code. The intention is that algorithms written in C can
form part of the model, even if SPIN cannot prove the algorithms themselves.
For example, a flight control system could incorporate algorithms requiring
floating-point computation. Even though these computations cannot be writ-
ten in PROMELA nor can they be verified with SPIN, it does make sense to
verify properties of the control system, such as absence of deadlock. Further-
more, since the inputs to the algorithms are usually discrete samples from
sensors, as are the commands to the actuators, the input-output relation can
be modeled in PROMELA. This implies that the model can be verified in SPIN

under the assumption that the embedded floating-point computation is correct.
Embedded C code is fully explained in Chapter 17 of SMC.

10

Advanced Topics in SPIN∗

The success of SPIN in industrial software development is primarily due to
the efficiency with which it carries out verifications. The efficiency results
in part from the architecture of SPIN (Figure 2.1), which generates a verifier
that is optimized for a particular model, correctness specification, and search
method. The verifier is written in C, a relatively low-level language that can
be optimized by compilers. Nevertheless, even the most efficient verifier will
run up against limitations of time and memory, so that the task of the systems
engineer is to find the appropriate tradeoffs between model complexity and
resources. SPIN supports various ways of optimizing the use of resources, in
particular, memory.

To profit from these options you must have a basic understanding of how
SPIN verifies models written in PROMELA; we give an overview of this topic
in Section 10.1. Section 10.2 surveys techniques for optimizing verifications
in SPIN. Section 10.3 describes how correctness specifications in temporal
logic are translated into never claims in PROMELA, and Section 10.4 presents
non-progress cycles, an alternate technique for verifying liveness properties.

If you intend to use any of the constructs introduced in this chapter, you
should read their full description in SMC or the man pages.

A prerequisite for understanding the material in this chapter is a basic
familiarity with data structures such as directed graphs and hash tables.

10.1 How SPIN searches the state space

Consider again the state transition diagram in Figure 4.1. The diagram is
repeated here in a somewhat reduced format:

146 10 Advanced Topics in SPIN∗

We already know that this solution to the critical section problem is incorrect
because of the deadlock. How can SPIN discover that this error state exists?
Clearly, it must search the state space represented by the graph, starting from
the initial state (4,11).1

Let us follow a systematic depth-first search from the initial node. We also
assume that the transitions in a state are ordered with those resulting from
the execution of a statement from process P coming first. The initial steps of
the search give us the path:

As shown by the bold arrow, the third step would be to return to the initial
state, but this state is not a new state that needs to be searched. The set of
nodes that have been visited on a path in a depth-first search is stored in a
stack, so by checking the stack it is possible to determine that the state has
already been visited and need not be searched again. Therefore, the search
backtracks and tries the transition from state (6,11) associated with the sec-
ond process; this leads to (6,12). Continuing again with the transitions for
the first process, the search quickly leads to state (5,12) and there are no
transitions out of the state:

1 The values of the variables will be omitted from the states in the discussion in this
section because each state is unambiguously identified by the control points of the
two processes.

10.1 How SPIN searches the state space 147

SPIN reports the invalid end state and terminates the search.
The advantage of the depth-first search is that a stack suffices to maintain

the history of the search; the only data you need to store is the sequence of
the states on the path to the current state, together with an indication for each
state which transition was the last one taken. In the worst case, of course,
the entire state diagram might be a linear sequence of states, but more com-
monly, the state diagram will be highly connected so that the size of the paths
will be significantly less than the total number of states.

Suppose now that we are not interested in the deadlock state, but rather
in verifying if mutual exclusion holds. Assume that the method described
in Section 5.7 is used – specifying mutual exclusion using remote references
– so that no new variables and states are needed. Furthermore, assume that
pan is run with the -E argument so that the verifier does not stop at invalid
end states like the deadlocked state. The depth-first search by the verifier
begins as before, but now it backtracks from the deadlocked state (5,12).
Eventually, SPIN will generate the following computation, where from state
(5,11) the transition leads to state (6,11):

Although the state does not appear on the stack, there is no point in con-
tinuing the search from this state, because it appeared earlier in the search
(see the third state from the left in the last diagram on the previous page).
Unfortunately, the state is no longer on the stack, but for an efficient search
it is important to maintain a data structure that stores all states that have
been visited. During verification SPIN expends most of its resources (time
and memory) storing states in this data structure and looking up newly cre-
ated states to see if they have been visited before. The next section describes
the various methods that SPIN uses to maintain the data structure and the
tradeoffs involved in choosing a method.

SPIN does not actually “search the graph” in the sense that the graph is
constructed and then searched; instead, for each transition that is considered,
SPIN builds the target state “on-the-fly.” This can make the search much more
efficient because SPIN need only construct states until the first counterexam-
ple is found. Of course, if there are no errors, all the states in the state space
will eventually be built, so the on-the-fly construction saves nothing, but in
most cases it is efficient because we construct more models with errors than
we do error-free models!

148 10 Advanced Topics in SPIN∗

Listing 10.1. Generating input in a separate process

1 #include "for.h"

2 chan ch = [0] of { byte };

3

4 active proctype Producer() {

5 for (i, 1, 10)

6 if
7 :: ch ! 0

8 :: ch ! 10

9 :: ch ! 20

10 fi
11 rof (i)

12 }

13

14 active proctype Consumer() {

15 byte n;

16 end:

17 do
18 :: ch ? n -> printf("%d\n", n)

19 od
20 }

10.2 Optimizing the performance of verifications

10.2.1 Writing efficient models

The performance of SPIN depends critically on how efficiently it can update
and search a data structure that stores the states that have been visited. The
data stored for each state, called the state vector, consist of the location coun-
ters of the processes and the values of the variables, for example, (4,11,0,0).
Clearly, verification will be more efficient if the amount of memory needed
to store a state vector is as small as possible; there are several things you can
do to reduce this:

• Use as few processes as possible. For example, if a process serves only
to generate data to be sent on a channel, you can remove the process
and generate the data within the process receiving the data using a non-
deterministic statement to select the message “received.” Consider the
program in Listing 10.1. We can remove the channel ch and the first

10.2 Optimizing the performance of verifications 149

Listing 10.2. Generating input in the same process

1 #include "for.h"

2 active proctype Consumer() {

3 byte n;

4 for (i, 1, 10)

5 if
6 :: n = 0

7 :: n = 10

8 :: n = 20

9 fi;
10 printf("%d\n", n)

11 rof (i)

12 }

process by moving the nondeterministic generation of data into the sec-
ond process (Listing 10.2). This reduces the size of the state vector from 20
bytes to 12 bytes and the number of distinct states from 123 to 64. Another
example of this technique is given in Section 11.8.

• Do not declare unnecessary variables, and declare variables with as nar-
row a type as possible; so, byte is preferable to int, and bit or bool is
preferable to byte.

• Avoid declaring channel capacities in excess of what is needed to verify
the model.

• Use atomic and d_step where possible, but be sure that you are not
“masking” possible error states by incorrectly restricting the interleaving.

Memory requirements will not be reduced in the following cases:

• A value of an mtype is stored in a full byte, regardless of the number of
symbols defined.

• An array whose elements are of type bit or bool is stored as an array of
type byte. Section 11.7.2 shows how to encode sets of bits into bytes.

For detailed information on memory management see Chapter 9 of SMC.

10.2.2 Allocating memory for the hash table

SPIN uses a hash table to store the state vectors that have been previously en-
countered. A hash function computes an index from the state vector consid-
ered as an uninterpreted sequence of bytes, and this index is used to access

150 10 Advanced Topics in SPIN∗

an element of a large array where (pointers to) the state vectors are stored.
Since the hash function can map different state vectors into the same index,
it can happen that the element of the hash array is already occupied; this is
called a hash conflict. In case of a hash conflict, the element of the array is
used as the head of a linked list where all state vectors that map to this index
are stored. It is important to reduce the number of hash conflicts because the
linear search of a list is inefficient.

The following diagram shows a schematic representation of the hash ta-
ble of state vectors:

? ?

?

?
5,12,1,1 5,13,1,15,11,1,0

4,12,0,1

The implications of this data structure are as follows:

• The smaller the state vector, the larger the number of elements in the hash
table for a given amount of memory.

• The larger the number of elements in the hash table, the more likely it
becomes that state vectors can be stored directly in the table without a
hash conflict.

During a long verification, the verifier prints out progress reports after
every million states have been searched. Here is part of the list of reports for
the 23-variable version of the program in Listing 8.2:

Depth=24 States=1e+006 Transitions=1.49999e+006 Memory=17.548

Depth=24 States=2e+006 Transitions=2.99999e+006 Memory=33.522

...

Depth=24 States=1.5e+007 Transitions=2.25e+007 Memory=241.497

Depth=24 States=1.6e+007 Transitions=2.4e+007 Memory=257.573

The information includes the depth reached in the depth-first search, the
number of states and transitions searched, and the amount of memory used
in megabytes. At the very least, these messages give some reassurance that
the verifier is actually making some progress! You can always terminate the
execution if the verification is taking too long or running out of memory
(Section 5.3.3).

10.2 Optimizing the performance of verifications 151

At the end of a verification, the verifier prints data on the use of memory:

State-vector 16 byte, depth reached 24, errors: 0

1.67772e+007 states, stored

8.38861e+006 states, matched

2.51658e+007 transitions (= stored+matched)

hash conflicts: 6.58266e+008 (resolved)

269.964 total actual memory usage

The first line shows that the size of the state vector is 16 bytes, which is ac-
tually quite small, but this is to be expected because the variables are of type
bool and can be compressed. The search depth is also shown; this is as ex-
pected because the verification must assign values to 23 variables and then
compute the expression in result.

The next lines are the most important because they report on the effi-
ciency of the hash table. About 16.8 million state vectors were stored in the
hash table, while another 8.4 million were found to be in the table when they
were generated by the search. We see that the check for previously generated
states reduced the number of state vectors that need be stored by one third.

Unfortunately, the number of hash conflicts was 658 million, and this in-
dicates that most of the execution time went into searching the linked lists
associated with conflicting hash table entries. Clearly, it is worthwhile in-
creasing the number of elements in the table. The size of the state vector is
so small that it cannot be further compressed, but since we used only 270
megabytes of memory (as printed in the last line of the verification report
above), it is possible to allocate more memory to the hash table. The default
for the number entries in the table is 218 = 256K, and it can be increased
using the -w argument when executing the verifier:

pan -w20

The following table shows how increasing the size of the hash table increases
the amount of memory needed by a moderate amount while greatly reducing
the number of hash conflicts and thus the running time of the verification:

Hash table (2w) Memory (MB) Conflicts (×106) Time (sec)

18 270 658 86
20 273 151 33
22 286 52 22
24 336 29 18
26 537 0.1 17

152 10 Advanced Topics in SPIN∗

An initial modest increase in the size of the hash table to 220 = 1M elements
dramatically improves the performance of the verifier from 86 to 33 seconds,
but a larger size has only a marginal effect, because the execution time then
depends more on factors other than hash conflicts.

Warning

Be alert for thrashing. This occurs when the verifier runs out of
physical memory so that subsequent allocations cause virtual
memory to be used. The excessive I/O to the disk will seriously
degrade the performance of the verifier. To prevent thrashing,
compile the verifier with the argument -DMEMLIM=n specifying
the maximum amount of memory in megabytes that may be allo-
cated.

Advanced: Hashing methods

SPIN implements two additional, extremely efficient, methods for
storing the hash table: bitstate hashing and hash compact. These meth-
ods are lossy because they may not store all the states that have been
visited, so some parts of the state diagram may not be searched and
some counterexamples may not found. That is, a false positive is possi-
ble where no errors are reported although some may exist. Neverthe-
less, these methods are useful because they do not give false negatives,
that is, if a counterexample is found, it represents a true error.

10.2.3 Compressing the state vector

The example in the previous section is atypical because the state vector was
very small; sizes of several hundred bytes are more common. SPIN imple-
ments a sophisticated method for encoding the state vector called collapse
compression, which is invoked by compiling the verifier with an argument:

gcc -DCOLLAPSE (other arguments) -o pan pan.c

For example, a verification of a PROMELA program for the Byzantine Gen-
eral’s algorithm (Section 12.4 of PCDP) had a state vector of 164 bytes that
required 127 bytes under the default compression. Using collapse compres-
sion, this was reduced to 39 bytes! The memory requirements were reduced
accordingly from 66 to 23 megabytes. There is a tradeoff between memory
use and execution time because of the time required to compress the state
vectors; here, execution time for the verification rose from 6 to 8 seconds.

10.3 Never claims 153

10.2.4 Minimal automaton

State vectors can be stored without a hash table using a representation called
a minimal automaton that is similar to the binary decision diagrams used in other
model checkers [8]. This is invoked with a compile-time argument that gives
the size of the automaton:

gcc -DMA=10 (other arguments) -o pan pan.c

The memory requirements can be reduced to a very small amount, but the ex-
ecution time is likely to rise significantly. For the program in Listing 8.2 the
verification was accomplished using only 0.38 MB, but the execution time
increased to 181 seconds. When verifying a larger version of the program,
my computer ran out of memory when I tried to use a hash table, but us-
ing the minimal automaton the verification was completed using only half a
megabyte of memory, although the verification ran for almost 10 minutes.

10.2.5 Partial-order reduction

One of the most important optimizations performed by SPIN is called partial
order reduction. This avoids creating states that cannot be affected by inter-
leaving the execution for the processes. For example, a multitasking system
run on a CPU with registers could be modeled by using global variables for
the memory and local variables for the registers:

register = n;

register++;

n = register;

SPIN can detect that interleaving statements of other processes before or af-
ter the increment of the local variable cannot affect any correctness specifi-
cation because they must use global variables. The manual optimization that
we demonstrated in Section 3.4 – combining the increment with one of the
other statements – is not strictly necessary, because a similar optimization is
achieved by partial order reduction. This optimization is performed by de-
fault so you do not need to invoke it. However, a few constructs in PROMELA

are not compatible with partial order reduction and should be avoided if pos-
sible; these are _last, provided, enabled and remote variable references.

10.3 Never claims

Section 10.1 described how SPIN searches the state transition diagram look-
ing for error states where an assertion evaluates to false or for invalid end

154 10 Advanced Topics in SPIN∗

Fig. 10.1. A finitely presented infinite falsifying computation

s0 s1 s2 s3 s4

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�¬ csp ¬ csp ¬ csp ¬ csp ¬ csp- - - -

?

states that can indicate deadlock. Checking correctness properties expressed
as formulas of temporal logic is more difficult.

Consider a correctness specification in temporal logic such as <>csp

where csp is true if process P is in its critical section (Section 5.4.1). The truth
of the formula cannot be evaluated just by looking at a single state; rather,
it is true in a state s0 if there is an accessible state sk in which csp is true.
Therefore, it can be falsified in s0 only if there exists an infinite computation
starting in s0 in which csp is never true. Since models in PROMELA are finite,
an infinite computation must be finitely presented, that is, composed of a finite
number of distinct states (Figure 10.1). It can be shown that for any correct-
ness specification in temporal logic, if there exists an infinite computation in
which the specification holds, then there exists a finitely presented computa-
tion of the form shown in the figure: a finite sequence of states followed by
a finite set of states that compose a strongly connected component within the
state transition diagram.

In Chapter 5 we showed how to specify correctness properties using tem-
poral logic. SPIN transforms a formula in temporal logic into a PROMELA

construct called a never claim. Just as a PROMELA program specifies an au-
tomaton whose state space is searched by the verifier, so a never claim speci-
fies an automaton whose state space is searched in parallel with the one that
is defined by the PROMELA program.

SPIN’s algorithm for verification is fully described in Chapter 8 of SMC;
here we outline the place of never claims in the algorithm. We will limit our
discussion to never claims obtained by translating a formula in temporal
logic, but never claims are constructs in the PROMELA language and can be
written directly. There are specifications that can be written as never claims
that cannot be written in temporal logic; furthermore, the translation might
not generate the most efficient claim. See Chapter 6 of SMC. An alternate
method of specifying correctness properties is to use a graphic formalism
called timelines as described in Chapter 13 of SMC. Liveness properties can
also be verified using non-progress cycles as explained in Section 10.4.

10.3 Never claims 155

10.3.1 A never claim for a safety property

Let us first consider a specification of a safety property in temporal logic
(Section 5.3.3). In an algorithm for solving the critical section problem, define
the variable critical as usual, together with the symbol:

#define mutex (critical <= 1)

and the specification of safety:

[]mutex

To understand how never claims work, look upon a verification as a com-
petition between you and the verifier generated by SPIN. You claim []mutex,
while SPIN aims to show that you are wrong because ![]mutex holds. Al-
though the terminology may seem somewhat cumbersome, this can be ex-
pressed as follows: you “win” if it is never true that ![]mutex holds, while
SPIN “wins” if it can find a computation in which ![]mutex holds. The nega-
tion of the correctness specification []mutex is translated into the following
never claim:

never { /* !([]mutex) */

T0_init:

if
:: (! ((mutex))) -> goto accept_all

:: (1) -> goto T0_init

fi;
accept_all:

skip
}

The never claim looks similar to an ordinary PROMELA program except that
it is composed of expressions and control statements only.

Let the game begin! Like many games, it is conducted by alternating
“turns” to move. We will follow the steps of the game first for the case where
the correctness claim of mutual exclusion does not hold, and then for the case
where it does.

After the PROMELA program is initialized, the first turn belongs to SPIN

because it is possible that there is a counterexample in the initial state. In the
initial state of an algorithm for the critical section problem, mutex is always
true because these algorithms always start with all processes in their noncrit-
ical sections. The first statement of the never claim is the if-statement and,
since by assumption mutex is true, !mutex is false, so the only executable
alternative is the one guarded by (1).2 The result of the execution of this

2 Recall that the expression (1) is the same as the expression true.

156 10 Advanced Topics in SPIN∗

statement is that control returns to the start of the if-statement at the label
T0_init.

Now you and SPIN take turns executing one (atomic) statement at a time.
Your program will execute the steps of the algorithm, while SPIN will re-
main in the loop defined by goto T0_init as long as mutex is true. When
your program finally enters a state in which mutex is false, the nondeter-
ministic if-statement can choose the first alternative and jump to the label
accept_all. skip is not really a statement, so SPIN has successfully ter-
minated its program (the never claim). The program that terminates first
is defined to have“won” the game. The never claim terminates in a state
in which mutex is false, showing <>!mutex is true; by duality (Section 5.6)
<>!mutex is equivalent to ![]mutex, thus falsifying your correctness specifi-
cation, []mutex.

Suppose now that your algorithm is correct and that mutual exclusion
does hold for every possible computation. Then SPIN will never be able to
complete the computation of the claim (which is why it was called a never
claim). The search will terminate and SPIN will not win because it cannot find
a computation in which ![]mutex is true. If we unravel the double negation,
![]mutex is not true so []mutex is true, and the verifier reports that there are
no errors. You win!

Advanced: “Executing” a never claim

The above description is somewhat misleading since the game is
not played by “executing” the programs as in simulation mode, but
rather it describes what happens in verification mode, which in-
volves a search of the entire state space. If mutual exclusion does
not hold, eventually a computation will be found in which the non-
determinism is resolved by choosing the alternative guarded by
(!((mutex))). The end of the never claim has been reached and SPIN

wins the game.

10.3.2 A never claim for a liveness property

Consider now the liveness property <>csp. SPIN wins the game if it can find
a computation in which !<>csp holds. By duality, !<>csp is equivalent to
[]!csp, so the formula cannot be falsified by finding a single state in which
!csp is true (as was the case with !mutex); instead, SPIN must find an infinite
computation in which !csp is true in all states, similar to the one shown in
Figure 10.1.

10.3 Never claims 157

The never claim for !<>csp is:

never { /* !(<>csp) */

accept_init:

T0_init:

if
:: (! ((csp))) -> goto T0_init

fi;
}

The game is played as before, with you and SPIN alternating turns. For
this never claim, there are two possibilities: If csp ever becomes true, SPIN is
blocked in its if-statement because there are no alternatives to (!((csp))),
and blocking is considered a loss for SPIN. A computation that contains a
state in which csp is true has been found, so the computation cannot falsify
[]!csp. You win and the verifier reports no errors.

If, on the other hand, csp never becomes true, SPIN will loop forever at the
never claim; it repeatedly executes the if-statement labeled accept_init. A
computation of a never claim that infinitely often passes through a statement
whose label begins with accept is called an acceptance cycle. If a verification
finds an acceptance cycle, it is considered a win for SPIN. This acceptance
cycle shows that there is an infinite computation in which !csp is always
true, that is, []!csp is true. By duality, this is equivalent to !<>csp, so <>csp

is false and you lose the game.
The acceptance cycle is written to the trail so that you can examine the

counterexample to find the error (see Section 5.4.2).
The term acceptance cycle explains why in Section 5.4.2 on verifying live-

ness properties, we required that the word Acceptance be selected in the
JSPIN toolbar or the argument -a be used with pan on the command line.

10.3.3 Never claims for other LTL formulas

As mentioned in Section 5.9.2, it is unlikely that you will want to prove just
<>csp because the specification of the liveness property of absence of starva-
tion requires that if a process ever tries to enter the critical section it will even-
tually succeed. A better correctness specification is the formula for infinitely
often, []<>csp; the negation of the formula is ![]<>csp, which by duality
is equivalent to <>[]!csp. That is, the cycle showing []!csp need not begin
in the initial state. The formula ![]<>csp translates into the following never
claim:

158 10 Advanced Topics in SPIN∗

never { /* !([]<>csp) */

T0_init:

if
:: (! ((csp))) -> goto accept_S4

:: (1) -> goto T0_init

fi;

accept_S4:

if
:: (! ((csp))) -> goto accept_S4

fi;
}

The acceptance cycle need not start with the first occurrence of !csp; instead,
the computation can take the alternative guarded by (1) indefinitely and
only later jump to accept_S4 to start the acceptance cycle.

For completeness, let us look at the never claim for the negation of the
latching formula <>[]csp. The negated formula !<>[]csp is equivalent to
[]<>!csp; a counterexample must have csp become false infinitely often so
that it does not become latched to true. The formula is translated to following
never claim:

never { /* !(<>[]csp) */

T0_init:

if
:: (! ((csp))) -> goto accept_S9

:: (1) -> goto T0_init

fi;
accept_S9:

if
:: (1) -> goto T0_init

fi;
}

As before, the search for a counterexample to <>!csp can start after an arbi-
trary prefix. When some state is found in which csp is false, <>!csp is true.
Control returns to the start of the never claim so that it can search for another
instance of <>!csp, which is required to show that []<>!csp holds.

10.4 Non-progress cycles 159

10.3.4 Predefined constructs for use in never claims

Some predefined variables and functions are used only in never claims:

• The predefined variable _last is read-only and global; its value is the
process ID of the last process from which a statement was executed.

• The predefined function pc_value returns an integer representing the
current location counter of the process whose ID is given as a parame-
ter to the function.

• The predefined boolean function enabled returns true if and only if the
process whose ID is given as a parameter to the function has an exe-
cutable statement.

• The predefined boolean variable np_ is read-only and global; its value is
true in all states that are not progress states as defined in Section 10.4.

Remote references enable access from within a never claim to the current
location counter of a process or the current value of a local variable (Sec-
tion 5.7).

10.4 Non-progress cycles

SPIN has the capability to verify some liveness properties without writing a
correctness specification in temporal logic. Consider, for example, an algo-
rithm that solves the critical section problem and fulfils the liveness property
of absence of starvation. What this means is that any (infinite) computation
of the algorithm must pass through the critical section of all of the processes
infinitely often.3 A counterexample to this correctness specification would
be an infinite computation that manages to avoid the critical section of some
process.

Listing 10.3 shows an algorithm that solves the critical section problem
for three processes using semaphores (Section 4.5). Let us select an arbitrary
process, say P, and designate the critical section as a progress state by labeling
it with a label that begins with the string progress (lines 6–7). What would it
mean for process P to be starved? By the structure of the program, it is clear
that that could occur only if there were a computation in which the P ceases to
execute statements, so that the remainder of the computation includes only
statements from other two processes. In other words, the correctness speci-
fication can be falsified only if there is an infinite computation that does not
include infinitely many occurrences of the progress state. In SPIN this is called

3 This assumes that processes do not halt in their noncritical sections.

160 10 Advanced Topics in SPIN∗

Listing 10.3. Non-progress cycles

1 byte sem = 1;

2

3 active proctype P() {

4 do
5 :: atomic { sem > 0 ; sem = sem - 1 }

6 progress:

7 sem = sem + 1

8 od
9 }

10 active proctype Q() {

11 do
12 :: atomic { sem > 0 ; sem = sem - 1 }

13 sem = sem + 1

14 od
15 }

16 active proctype R() {

17 do
18 :: atomic { sem > 0 ; sem = sem - 1 }

19 sem = sem + 1

20 od
21 }

a non-progress cycle, because eventually the computation enters a cycle that
does not contain a progress state. To search for a non-progress cycle:

jSpin

Select Non-progress from the pulldown menu. Select Verify to run
SPIN and then Trail to view the cycle if one is found.

Command line

The generated verifier must be compiled with the argument -DNP and
the verifier run with the argument -l:

spin -a sem-prog.pml

gcc -DNP -o pan pan.c

pan -l

10.4 Non-progress cycles 161

SPIN quickly reports an error and a guided simulation shows that there
is an infinite computation in which only processes Q and R participate:

2 R 20 sem>0

2 R 20 sem = (sem-1)

Process Statement sem

2 R 21 sem = (sem+1) 0

1 Q 13 sem>0 1

1 Q 13 sem = (sem-1) 1

1 Q 14 sem = (sem+1) 0

2 R 20 sem>0 1

2 R 20 sem = (sem-1) 1

2 R 21 sem = (sem+1) 0

<<<<<START OF CYCLE>>>>>

2 R 20 sem>0 1

2 R 20 sem = (sem-1) 1

2 R 21 sem = (sem+1) 0

1 Q 13 sem>0 1

1 Q 13 sem = (sem-1) 1

1 Q 14 sem = (sem+1) 0

2 R 20 sem>0 1

2 R 20 sem = (sem-1) 1

2 R 21 sem = (sem+1) 0

Although the guard sem>0 is true infinitely often, the search always chooses
a transition from Q (line 12) or R (line 18), instead of the one from P (line 5).
Therefore, process P experiences starvation.

Run a verification with non-progress cycles for Peterson’s algorithm (List-
ing 5.4); there will be no errors because starvation is impossible in that algo-
rithm.

Non-progress cycle are implemented by generating a never claim using
the predefined variable np_ that is true if no process is at a progress state.
There is a non-progress cycle if there is an acceptance cycle in which np_ is
always true.

11

Case Studies∗

This chapter contains five case studies designed to bring together the indi-
vidual programming structures in PROMELA and the SPIN verification tech-
niques that we have studied in isolation. The first case study shows how to
create data structures using channels together with the various send and re-
ceive statements. In the second case study we show how to program two
classic nondeterministic algorithms. The third and fourth case studies model
a scheduling algorithm and a mutual exclusion algorithm for real-time sys-
tems. The final case study examines an algorithm for a distributed system.
It shows that a model for verifying a distributed system need not be con-
structed according the system architecture; instead, a more efficient model
can be constructed that captures the algorithmic behavior of the system.

11.1 Channels as data structures

While channels are intended to be used for modeling communications lines,
the statements defined on channels are quite flexible and can be used to
implement data structures that are otherwise impossible to implement in
PROMELA. Listing 6.2 presented an implementation of sparse arrays that
used an array to hold the entries for non-zero elements. Here, a different
implementation is given: the entries are stored in channels and the program
is expanded to add two sparse arrays.

The inline construct (Section 6.4) will be used extensively to structure
the program. Recall that inline simply performs textual substitution with-
out creating a new scope, so declarations are usually written outside the in-
lined code to prevent multiple declarations. Listing 11.1 contains the main
process, where two sparse arrays sa1 and sa2 are initialized and printed

164 11 Case Studies∗

Listing 11.1. Sparse arrays (main program)

1 active proctype P() {

2 int i;

3 ENTRY e, e1, e2;

4

5 initEntry(sa1, 0, 1, -5);

6 initEntry(sa1, 0, 3, 8);

7 initEntry(sa1, 2, 0, 20);

8 initEntry(sa1, 3, 3, -3);

9 printf("Sparse array 1:\n");

10 printSA(sa1);

11

12 initEntry(sa2, 0, 2, -2);

13 initEntry(sa2, 0, 3, 5);

14 initEntry(sa2, 2, 0, -15);

15 printf("Sparse array 2:\n");

16 printSA(sa2);

17

18 addSA(sa1, sa2, sa3);

19 printf("Sparse array 3:\n");

20 printSA(sa3)

21 }

(lines 5–10 and 12–16); then the code for adding the arrays into sparse array
sa3 is called and the result is printed (lines 18–20).

Listing 11.2 contains the global declarations of the program. The entries in
the sparse array are defined to be of a type declared in a typedef (lines 1–5),
and channels are declared to store the entries (lines 7–9). The initialization of
the arrays is easier than it was before, because once an entry is built (lines 12–
14), an output statement S!e places the entry into the channel (lines 15), and
there is no need to keep track of the current index in an array.

The code for printing a sparse array (Listing 11.3) is interesting. We want
to read the values of all the entries in the channel, without destroying the
data structure as would happen if we executed an ordinary receive statement
that removes a message from the channel:

do
:: nempty(S) -> S ? e; printf(...)
:: empty(S) -> break
od

11.1 Channels as data structures 165

Listing 11.2. Sparse arrays (declarations)

1 typedef ENTRY {

2 byte row;

3 byte col;

4 int value

5 }

6

7 chan sa1 = [5] of { ENTRY };

8 chan sa2 = [5] of { ENTRY };

9 chan sa3 = [10] of { ENTRY };

10

11 inline initEntry(S, R, C, V) {

12 e.row = R;

13 e.col = C;

14 e.value = V;

15 S ! e

16 }

The trick is to immediately send back to the channel every entry that we
receive (lines 6–7); at the end of the loop the channel returns to its original
state. How do we know when the loop is finished? The number of messages
in the channel (Section 7.4.1) is assigned to a variable i that is used to count
down from its initial value len(S) to zero (lines 2, 4, 10).

The algorithm for adding two sparse arrays (Listing 11.4) assumes that
they are sorted; it is very similar to the algorithm for merging sorted lists.
There are four alternatives in the do-statement, depending on which channels
are nonempty: (a) neither (line 3); (b) the first channel only (lines 4–9); (c) the
second channel only (lines 10–15); or (d) both (lines 16–29).

• If both channels are empty, the algorithm can terminate.
• If only one channel is nonempty, we transfer its contents to the result

channel sa3 (lines 6, 12). do-statements are used, and the second alterna-
tives are chosen when the channel is empty in order to break the loop.

• If both channels are nonempty, the algorithm must examine three cases:
(a) the heads of both channels refer to the same array element (lines 20–
23); (b) the head of the first channel refers to a smaller element than the
head of the second (lines 24–26); and (c) otherwise, the second channel
holds the smaller element (lines 27–28).

166 11 Case Studies∗

Listing 11.3. Sparse arrays (printing)

1 inline printSA(S) {

2 i = len(S);
3 do
4 :: i == 0 -> break
5 :: else ->

6 S ? e;

7 S ! e;

8 printf("Row = %d, column = %d, value = %d\n",

9 e.row, e.col, e.value)

10 i--

11 od
12 }

To determine which alternative holds we need the values of the entries at
the heads of both channels, but in the second and third alternatives we only
use one of them and the other should be “pushed back” onto the head of
the channel. In PROMELA a message cannot be pushed back onto the head
of a channel, but we can obtain the values of the entries at the head of the
channels without actually removing them from the channel by copying their
values (Section 7.7) as shown in lines 17–18.

An if-statement determines what to do in each case: (a) remove both en-
tries and use initEntry to create a new entry with the sum of the values of
the two; (b–c) transfer the entry from one of the channels to the result chan-
nel. The following drawing shows in bold the element that will be appended
to the sa3 after removing the heads of the other two channels and adding
their values:

sa1

0,3,8 2,0,20 3,3,-3

sa2

0,3,5 2,0,-15

sa3

0,1,-5 0,2,-2 0,3,13

HHHH

����� +

11.1 Channels as data structures 167

Listing 11.4. Sparse arrays (adding)

1 inline addSA(S1, S2, S3) {

2 do
3 :: empty(S1) && empty(S2) -> break
4 :: nempty(S1) && empty(S2) ->

5 do
6 :: nempty(S1) -> S1 ? e1; S3 ! e1

7 :: empty(S1) -> break
8 od;
9 break

10 :: empty(S1) && nempty(S2) ->

11 do
12 :: nempty(S2) -> S2 ? e2; S3 ! e2

13 :: empty(S2) -> break
14 od;
15 break
16 :: nempty(S1) && nempty(S2) ->

17 S1 ? <e1>;

18 S2 ? <e2>;

19 if
20 :: (e1.row == e2.row) && (e1.col == e2.col) ->

21 S1 ? e1;

22 S2 ? e2;

23 initEntry(S3, e1.row, e1.col, e1.value+e2.value)

24 :: (e1.row < e2.row) ||

25 ((e1.row == e2.row) && (e1.col < e2.col)) ->

26 S1 ? e1; S3 ! e1

27 :: else ->

28 S2 ? e2; S3 ! e2

29 fi
30 od
31 }

168 11 Case Studies∗

11.2 Nondeterministic algorithms

The first article on nondeterministic algorithms was written by Robert W.
Floyd in 1967 [10]. Floyd regarded nondeterminism as a concise way of ex-
pressing algorithms that could be mechanically translated into deterministic
algorithms that use backtracking. Forty years later, it is appropriate to write
these algorithms as PROMELA programs and to obtain solutions using the au-
tomatic backtracking performed during a SPIN verification. The algorithms
and notation from [10] will be retained. Code for initializing and printing
data has been omitted and can be found in the software archive.

The first algorithm is the classic eight-queens problem that you have al-
most certainly encountered. The second is less well known: finding all simple
cycles in a directed graph.

11.2.1 The eight-queens problem

The eight-queens problem is to write an algorithm to place eight queens on
an 8 × 8 chessboard so that no queen can capture any other. A solution is
shown in Figure 11.1.

Floyd’s algorithm written in PROMELA is given in Listing 11.5. A solu-
tion to the problem is an array of eight integer values stored in the variable
result; for each column i, result[i] is the row in which the queen is placed,

Fig. 11.1. A solution to the eight-queens problem

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1 Q

Q

Q

Q

Q

Q

Q

Q

11.2 Nondeterministic algorithms 169

Listing 11.5. The eight-queens problem

1 byte result[8];

2 bool a[8];

3 bool b[15];

4 bool c[15];

5

6 active proctype Queens() {

7 byte col = 1;

8 byte row;

9 do
10 :: Choose();

11 !a[row-1];

12 !b[row+col-2];

13 !c[row-col+7];

14 a[row-1] = true;
15 b[row+col-2] = true;
16 c[row-col+7] = true;
17 result[col-1] = row;

18 if
19 :: col == 8 -> break
20 :: else -> col++

21 fi
22 od;
23 Write()

24 }

so for the solution in Figure 11.1, result contains 1, 5, 8, 6, 3, 7, 2, 4. The al-
gorithm works by nondeterministically choosing a row for each column in
sequence, and then checking that a queen placed on that square cannot cap-
ture a queen that has already been placed on the board.

To facilitate checking for captures, three auxiliary boolean arrays are
used: a[i] is true if there is a queen in row i; b[i] is true if there is a queen
on the positive diagonal i; c[i] is true if there is a queen on the negative
diagonal i. The positive diagonals go from the lower left to the upper right
of the board, while the negative diagonals go from the upper left to the lower
right. It is easy to check that there are fifteen diagonals of each type, that the
squares on the positive diagonals are those with equal values of the sum of

170 11 Case Studies∗

the row and column numbers, and that the squares on the negative diagonals
are those with equal values of the difference between them.

The process starts out by initializing col to 1. It then proceeds with a do-
statement that places a queen on each column in sequence, terminating when
a queen has been placed on the eighth column (lines 18–21). The nondeter-
ministic choice of a row for each column is done in an inline sequence Choose
(not shown), which is implemented as a nondeterministic if-statement using
the technique shown in Section 4.6.2.

Once a row number is chosen for a queen, lines 11–13 check the row and
diagonal data structures to see if a capture is possible. If so, the execution
blocks, and since there is only one process, the computation terminates at this
point. If a capture is not possible, the data structures are updated (lines 14–
16) and the row number stored in result. Since array indices in PROMELA

start from zero, offsets to the indices must be computed in lines 11–17. Once
all queens have been placed successfully, the solution is written out in the
inline sequence Write.

There is not much point in running a random simulation of this algo-
rithm. The vast majority of the computations of the program end with the
process Queens blocked because one queen can capture another. You can run
an interactive simulation if you know a solution, but, of course, the whole
point is to have the program compute one.

A SPIN verification can be run to search for a solution. Add the assertion

assert(false)

as the last statement of the program. A counterexample for the verification
will be one in which the assertion is violated, namely, a computation that
successfully exits the loop because all queens have been placed on the board.

However, there is one problem with the verification. Whenever the pro-
cess is blocked because one queen can capture another, the process is at an
end state, but it is an invalid one that is not the final statement of the process
(Section 4.7.2). To enable the verifier to continue the search for a counter-
example violating the assertion, labels starting with the string end can be
added to lines 11, 12, and 13:

enda: !a[row-1];

endb: !b[row+col-2];

endc: !b[row-col+7];

Alternatively, run the verifier with the -E argument.
The verifier reports an assertion violation and running a guided simula-

tion with the trail file prints a solution to the problem:

11.2 Nondeterministic algorithms 171

1, 5, 8, 6, 3, 7, 2, 4,

spin: line 47 "queens.pml", Error: assertion violated

spin: text of failed assertion: assert(0)

spin: trail ends after 105 steps

At the end of a simulation, SPIN prints the details of the final state: the val-
ues of the location counters and the variables. If you are interested just in
the output from the printf statements, the printout of the final state can be
suppressed by using the -B argument.

It is well known that the eight-queens problem has 92 solutions. As de-
scribed in Section 8.1.3, it is possible to request that the verifier find all of
them:

pan -E -c0 -e

Contrary to our expectation, the program in Listing 11.5 will find only 86
out of the 92 counterexamples. The problem is that the variable result is
write-only because it is assigned to in line 17, but its value is never read:

spin: warning, "queens.pml",

global, ’byte result’ variable is never used

The verifier generated by SPIN optimizes its search by ignoring write-only
variables since they cannot affect the correctness of a correctness specifica-
tion. printf statements are also ignored during verifications, so the variable
result is not “read” in this program.

All 92 solutions can be generated by artificially reading the value of
result; add the statement

byte dummy = result[0]

after the do-statement and before the assert statement. Of course, a warning
message will be issued that dummy is write-only, but we are not interested
in its value. If the anonymous write-only variable is used, there will be no
warning message:

_ = result[0]

11.2.2 Cycles in a directed graph

Consider the directed graph in Figure 11.2. The path defined by the sequence
of nodes (1,3,2,4) returning the first node 1 is a simple cycle: it is a closed
path that does not go through any node more than once. The problem is to
write an algorithm to find simple cycles in a directed graph.

172 11 Case Studies∗

Fig. 11.2. Simple cycles in a directed graph

��
��

��
��

��
��

��
��

3 4

1 2

�

-
�

? ?�
�

�
�

�
�

�
�

���

@
@

@
@

@
@

@
@

@@I

Floyd’s algorithm uses a two-dimensional array step to store the di-
rected graph, where stepi,j is true if and only if there is an edge from node
i to node j. The implementation in PROMELA is shown in Listing 11.6. The
two-dimensional array step is implemented using typedef (lines 1–6). The
boolean array used ensures that a node appears at most once in a cycle;
used[i] is true if and only if node i has been used. The list of nodes in a
cycle is stored in the array result (line 8).

Nodes are chosen nondeterministically as described in Section 4.6.2. Once
an initial node is chosen (line 13), a do-statement is executed until a new

node has been chosen that is the same as the initial node (line 22). The
variable old is used to store the last node chosen (lines 14, 25). The body
of the loop consists of storing old in result (line 16), nondeterministically
choosing a new node (line 18), and checking that this node has not been used

before (line 19) and that there is an edge from the old node to the new one
(line 20). If so, we mark the node as used (line 24) and prepare for the next
execution of the loop (line 25).

Running a verification to find solutions proceeds exactly as described in
the previous subsection for the eight-queens algorithm. There are 15 solu-
tions for the graph in Figure 11.2, which consist of all cyclic shifts of

(1, 2)

(1, 2, 4)

(1, 3, 2)

(1, 3, 2, 4)

(2, 4, 3)

11.3 Modeling a real-time scheduling algorithm 173

Listing 11.6. Cycles in a directed graph

1 #define N 4

2 typedef ROW {

3 bool row[N];

4 }

5

6 ROW step[N];

7 bool used[N];

8 byte result[N];

9

10 active proctype Cycles() {

11 byte initial, old, new, i;

12 initValues();

13 Choose(initial);

14 old = initial;

15 do
16 :: result[i] = old;

17 i++;

18 Choose(new);

19 !used[new-1];

20 step[old-1].row[new-1];

21 if
22 :: new == initial -> break
23 :: else ->

24 used[new-1] = true;
25 old = new

26 fi
27 od;
28 Write();

29 assert(false)
30 }

11.3 Modeling a real-time scheduling algorithm

SPIN is intended to be used to model and verify concurrent and distributed
systems without the use of numeric values of time and duration. Algorithms
for these systems are designed to be independent of the speed of execu-
tion of a process or the speed at which a message is delivered, so it is suf-
ficient to know that there are no errors caused by interleaving statements

174 11 Case Studies∗

and messages. SPIN can model real-time systems by treating time as discrete
so that it can be represented by a variable of integer type. In this section we
model a scheduling algorithm and verify that it is correct.

11.3.1 Real-time systems

Real-time systems are those that have requirements on their response times.1

For example, a flight control system is required to sample sensors and issue
appropriate commands to the flight controls every t milliseconds, where t
ranges from 5 to 50 milliseconds. Real-time systems are constructed by di-
viding up the computation into short tasks and then scheduling the tasks. The
scheduling may be synchronous, where each task is given one or more slots
within a period of time, or asynchronous, where the tasks are given priorities
and a preemptive scheduler ensures that a lower-priority task is not run if a
higher-priority task is ready.

Tasks in a real-time system are generally defined to be periodic: with each
task we associate a period p and an execution time e. The task is required to
execute at least once every p units of time (microseconds or milliseconds or
seconds), and it needs at most e units to complete its execution. Consider, for
example, two tasks T0 and T1, such that p0 = 2, e0 = 1, and p1 = 5, e1 = 2;
that is, T0 needs 1 unit out of every 2 units, and T1 needs 2 units out of every
5. We now ask if there is a feasible assignment of priorities, that is, if there is
an assignment of priorities such that each task receives the execution time it
requires when the tasks are scheduled by an asynchronous scheduler.

The following diagram shows that assigning T0 a higher priority than T1
is feasible:2

0 1 2 3 4 5

T0

T1

T0 receives the first unit out of every two. The execution of T1 starts at time 1
and is interrupted at time 2 because the higher priority task T0 is now ready
to execute. Task T1 resumes execution at time 3. In total, T1 receives two units
out of every five as required.

1 An introduction to real-time systems can be found in Chapter 13 of PCDP. A com-
prehensive reference is [14].

2 These diagrams are taken from Section 13.12 of PCDP and are used with the per-
mission of Pearson Education.

11.3 Modeling a real-time scheduling algorithm 175

Not all assignments are feasible. Assigning a higher priority to T1 results
in the computation shown in the following diagram:

0 1 2 3 4 5

T1

T0

T1 executes for two units without interruption, by which time T0 has not
received one unit out of the two that it needs.

We now show how to model an asynchronous scheduler of periodic tasks
in PROMELA. When no priorities are assigned, the scheduler will contain er-
rors because the requirements will not be met. Then we model preemptive
scheduling with priorities using a scheduling algorithm that produces a fea-
sible assignment if one exists.

11.3.2 Modeling a scheduler in PROMELA

A model of a scheduler without priorities is shown in Listing 11.7. The global
variable clock models time. Each task T receives as parameters an identifi-
cation number, its period, and its execution time (line 5). Since we need not
execute a task more often than its period, the task is executable only if the
clock has reached its next scheduled time (line 9). The execution of the task
is modeled by adding the task’s execution time exec to the clock (line 10);
then, the next time to run the task is computed (line 11). Finally, a global flag
done is set (line 12).

This flag is used to implement a watchdog (see Section 8.1.1). There is a
task Watchdog corresponding to each task T. Each task is required to set its
flag by the end of its deadline (line 21). The watchdog is executed when the
clock has passed the deadline for T; the deadline is one period later than the
next time at which the task is to be executed (lines 18, 23). If the flag has not
been set, the assert statement (line 22) will cause an error.

Since the periodic tasks may not take all of the available execution time,
a task Idle is used to increment the variable clock if no other process can
be executed (lines 1–7 of Listing 11.8). The initial process instantiates the
processes with their parameters (lines 9–17 of Listing 11.8).

Running simulations leads to errors when the assertion is evaluated and
found to be false. The value of clock in several runs ranged from 5 to 20.

176 11 Case Studies∗

Listing 11.7. Periodic execution of tasks

1 #define N 2

2 byte clock = 0;

3 bool done[N] = false;
4

5 proctype T(byte ID; byte period; byte exec) {

6 byte next = 0;

7 do
8 :: atomic {

9 clock >= next ->

10 clock = clock + exec;

11 next = next + period;

12 done[ID] = true
13 }

14 od
15 }

16

17 proctype Watchdog(byte ID; byte period) {

18 byte deadline = period;

19 do
20 :: atomic {

21 clock >= deadline ->

22 assert done[ID];

23 deadline = deadline + period;

24 done[ID] = false
25 }

26 od
27 }

An attempt to verify the model leads to a short counterexample as shown
by the following guided simulation (edited from the display of JSPIN):

Process Statement T(4):next clock done[0] done[1]

4 T 9 clock>=next

4 T 10 clock = (clock+exec)

4 T 11 next = (next+period) 2

4 T 12 done[ID] = 1 5 2

3 Watch 21 clock>=deadline 5 2 0 1

spin: line 22 "sched1.pml", Error: assertion violated

spin: text of failed assertion: assert(done[ID])

11.3 Modeling a real-time scheduling algorithm 177

Listing 11.8. Idle and initial processes

1 proctype Idle() {

2 do
3 :: atomic {

4 timeout -> clock++

5 }

6 od
7 }

8

9 init {

10 atomic {

11 run Idle();

12 run T(0, 2, 1);

13 run Watchdog(0, 2);

14 run T(1, 5, 2);

15 run Watchdog(1, 5)

16 }

17 }

This guided simulation is the incorrect computation shown in the dia-
gram on page 175, where T1 is scheduled before T0. The process T with pid
4 models T1 and is executed first, followed by process Watchdog with pid 3
that models the watchdog associated with T0. It detects that the deadline for
T0 has arrived but its done flag is not set.

11.3.3 Simplifying the model

The model can be simplified by combining both the task T and its watchdog
into one process (Listing 11.9). A guarded command is used to choose be-
tween the processing of the task (lines 6–11) and the watchdog (lines 12–17).
We have added an additional term to the guard of the task (line 7) to ensure
that once the deadline has passed the watchdog will be executed, not the
task. The Idle and initial tasks remain as shown in Listing 11.8.

11.3.4 Modeling a scheduler with priorities

In Section 9.3 we introduced two constructs in PROMELA for modeling pri-
orities. The specifier priority is not relevant here because it just affects the

178 11 Case Studies∗

Listing 11.9. Periodic execution of tasks (simplified)

1 proctype T(byte ID; byte period; byte exec) {

2 byte next = 0;

3 byte deadline = period;

4 bool done = false;
5 do
6 :: atomic {

7 (clock >= next) && (clock < deadline) ->

8 clock = clock + exec;

9 next = next + period;

10 done = true
11 }

12 :: atomic {

13 clock >= deadline ->

14 assert done;

15 deadline = deadline + period;

16 done = false
17 }

18 od
19 }

relative priority of processes in simulation and cannot be used to verify prop-
erties of a preemptive scheduler. The specifier provided enables absolute pri-
ority to be given to one process over another and could have been used, but
instead, we will model priority directly.

The model for the priority-driven scheduler is shown in Listing 11.10.
(The Idle and initial processes are straightforward and are shown in List-
ing 11.11.) The priorities are modeled by a queue implemented by a channel
that is used to store the tasks (line 4). The messages in the channel are the IDs
of the tasks, and tasks with lower IDs are assumed to have higher priority.
By storing the IDs in ascending order we ensure that the message at the head
of the channel is of the highest priority.

When a task must be executed (clock>=next, line 13), it places its ID on
the queue (lines 16); the guard in line 15

!(queue ?? [eval(ID)])

ensures that a task is not queued if it is already in the channel. The double
question marks check if the argument can be matched anywhere on the chan-
nel and not just at the head. The brackets denote side-effect-free polling, and

11.3 Modeling a real-time scheduling algorithm 179

Listing 11.10. Scheduling with priorities

1 #define MAX 4

2 byte clock = 0;

3 byte maxPeriod;

4 chan queue = [MAX] of { byte };

5

6 proctype T(byte ID; byte period; byte exec) {

7 byte next = 0;

8 byte deadline = period;

9 byte current = 0;

10 end:

11 do
12 :: atomic {

13 (clock >= next) && (clock < deadline) &&

14 (clock < maxPeriod) &&

15 !(queue ?? [eval(ID)]) ->

16 queue !! ID

17 }

18 :: atomic {

19 (clock >= next) && (clock < deadline) &&

20 (queue ? [eval(ID)]) ->

21 current++;

22 clock++;

23 if
24 :: current == exec ->

25 queue ? eval(ID);
26 current = 0;

27 next = next + period

28 :: else
29 fi
30 }

31 :: atomic {

32 (clock >= deadline) ->

33 assert (!(queue ?? [eval(ID)]));
34 deadline = deadline + period

35 }

36 od
37 }

180 11 Case Studies∗

Listing 11.11. Idle and initial processes

1 proctype Idle() {

2 end:

3 do
4 :: atomic {

5 (clock < maxPeriod) && timeout ->

6 clock++

7 }

8 od
9 }

10

11 init {

12 atomic {

13 run Idle();

14 maxPeriod = 5;

15 queue ! 0;

16 queue ! 1;

17 run T(0, 2, 1);

18 run T(1, 5, 2);

19 }

20 }

eval computes the current value of the variable ID for the match. We also
check that clock < deadline (line 13) so that a task is not placed on queue

once its deadline has passed. The term in line 14 of the guard is explained
below.

The second alternative (lines 18–30) models the execution of a task. It is
executable under the same conditions on clock as the previous alternative,
together with the condition that the task’s ID is on the head of the queue
(line 20). To enable preemption we no longer add the value of exec to clock;
instead, clock is incremented by one unit of time (line 22), as is the variable
current which keeps track of how many units have been executed by this
task (line 21). If the execution time of the task has completed (current==exec,
line 24), the variable current is reset (line 26) and the time when the task
must be executed next is computed (line 27).

The array of flags done is not needed to implement a watchdog; instead,
the channel is checked to see if the task ID is still there (lines 31–35).

11.4 Fischer’s algorithm 181

To implement priorities, sorted send is used (line 16). The double excla-
mation point causes the message to be inserted into the channel in sorted
order. The poll statement (line 20) and the receive statement (line 25) check
and remove the message at the head of the channel, ensuring that priorities
are implemented as intended.

It can be shown that if a counterexample exists, then one exists within the
initial part of the computation defined by the first period of some task [14,
Section 6.5]. Therefore, it is sufficient to verify the model for values of clock
up to the maximum of the periods; this is stored in the variable maxPeriod

and set in the initial process (line 14 of Listing 11.11). The alternative that
adds a task to the queue (line 14 of Listing 11.10) and the alternative that
increments clock (line 5 of Listing 11.11) become unexecutable when the
value of maxPeriod is reached. The labels end (line 10 of Listing 11.10 and
line 2 of Listing 11.11) prevent the reporting of invalid end states.

A verification for the two tasks T0, T1 initialized in lines 17–18 of List-
ing 11.11 will not report any errors, but if the initialization is changed such
that the IDs of the tasks are exchanged:

run T(1, 2, 1);

run T(0, 5, 2);

a counterexample will be found.

11.3.5 Rate monotonic scheduling

It can be shown that if there is a feasible priority assignment, then rate
monotonic scheduling is feasible [14, Section 6.4]. This is achieved by assigning
priorities in inverse order of the periods of the tasks, that is, the shorter the
period, the higher the priority. This is the reason that task T0 of the exam-
ple was given a higher priority. The reader is invited to experiment with the
following data in order to see which have feasible priority assignments and
which do not:3

(p1 = 8, e1 = 3), (p2 = 9, e2 = 3), (p3 = 15, e3 = 3),

(p1 = 8, e1 = 4), (p2 = 12, e2 = 4), (p3 = 20, e3 = 4),

(p1 = 8, e1 = 4), (p2 = 10, e2 = 2), (p3 = 12, e3 = 3).

11.4 Fischer’s algorithm

This section shows another example of the use of discrete time in a model.
The example is Fischer’s algorithm for solving the critical section problem

3 The data are taken from Exercise 6.5 in [14].

182 11 Case Studies∗

Listing 11.12. An algorithm for the critical section problem

1 #define N 6

2 byte turn = 0;

3

4 active [N] proctype P() {

5 do
6 :: turn == 0 ->

7 turn = _pid+1;
8 turn == _pid+1 ->

9 /* Critical section */

10 turn = 0

11 od
12 }

[15, Section 24.2]. Although the algorithm is very efficient, its correctness de-
pends on the actual time taken by each statement, so its use should be limited
primarily to systems, such as real-time systems, in which timing constraints
are an essential part of their design.

Consider the algorithm for the critical section problem show in List-
ing 11.12. The variable turn is used to indicate if a process is trying to enter
its critical section and its value is zero if none is doing so. The expression in
line 8 is supposed to ensure that if process has set the variable, then no other
process has subsequently set it to another value.

Of course, the algorithm is trivially incorrect, as shown in the following
computation in which mutual exclusion is not achieved:

Process Statement turn

P1 turn == 0 0
P2 turn == 0 0
P1 turn = 1 0
P1 turn == 1 1
P1 /*CS */ 1
P2 turn = 2 1
P2 turn == 2 2
P2 /*CS */ 2

11.4 Fischer’s algorithm 183

Consider now a computation that starts as follows:

Process Statement turn

P1 turn == 0 0
P1 turn = 1 0
P2 turn == 0 1
P1 turn == 1 1

In this computation, P1 “quickly” sets its ID in turn after discovering that
turn is zero, and then “slowly” rechecks the value of turn so that P2 has a
chance to execute and to become blocked when it finds that turn is not zero.
It can be shown that if the duration of “slowly” is at least as great as that of
“quickly,” the algorithm is correct.

A PROMELA program for Fischer’s algorithm is shown in Listings 11.13
and 11.14. The algorithm in Listing 11.13 is the same as at that in List-
ing 11.12, except that we have added an array variable timer (line 6) to
implement the delays described above. The guard in line 16 ensures that a
process sets its ID in turn within DELAY1 time units of finding out that turn
is zero (line 12). The guard in line 23 ensures that a process checks its ID in
turn (line 25) at least DELAY2 time units after it sets its ID in turn (line 17–18).
atomic is used extensively to prevent interleaving between setting or check-
ing the timers and the corresponding actions of the algorithm.

A separate process is used to model a ticking clock (Listing 11.14). In one
deterministic step, it decrements all timers that have positive values. The
Clock process is executed asynchronously with the processes in Listing 11.13.
If Clock is not executed between line 12 and line 16 of one of the processes
P, the computation models the case in which line 16 is executed immediately
after line 12. If Clock is executed three times between line 12 and line 16,
the computation models the case in which P waited “too long” (greater than
DELAY1 units) between the statements. timer[_pid] will have been decre-
mented to zero and the attempt to enter the critical section is abandoned
(line 19).

If all processes P are blocked at line 23 with nonzero timers, the process
Clock will be the only one that is executable; when it decrements the values
of one or more timers to zero, some of the other processes will no longer be
blocked.

184 11 Case Studies∗

Listing 11.13. Fischer’s algorithm for the critical section problem

1 #define N 6

2 #define DELAY1 2

3 #define DELAY2 3

4

5 byte turn = 0;

6 byte timer[N] = 0;

7

8 active [N] proctype P() {

9 start:

10 do
11 :: atomic {

12 turn == 0 -> timer[_pid] = DELAY1

13 }

14 atomic {

15 if
16 :: timer[_pid] > 0 ->

17 turn = _pid+1;
18 timer[_pid] = DELAY2

19 :: else -> goto start

20 fi
21 }

22 atomic {

23 timer[_pid] == 0 ->

24 if
25 :: turn == _pid+1
26 :: else -> goto start

27 fi
28 }

29 atomic {

30 /* Critical section */

31 turn = 0

32 }

33 od
34 }

11.4 Fischer’s algorithm 185

Listing 11.14. Modeling a clock for Fischer’s algorithm

1 active proctype Clock() {

2 byte i;

3 do
4 :: d_step {

5 i = 0;

6 do
7 :: i >= N -> break
8 :: else ->

9 if
10 :: timer[i] > 0 -> timer[i]--

11 :: else
12 fi;
13 i++

14 od
15 }

16 od
17 }

Mutual exclusion is verified as usual by incrementing a variable critical
and asserting that it is at most one. Replace lines 22–32 in Listing 11.13 by

atomic {

timer[_pid] == 0 ->

if
:: (turn == _pid+1) -> critical++;

:: else -> goto start

fi
}

atomic {

assert (critical <= 1);

critical--;

turn = 0

}

186 11 Case Studies∗

The modeling of time and the verification of timing constraints is an im-
portant area of current research. DTSPIN is a modified version of SPIN that
is optimized for modeling systems using discrete time.4 Another approach is
taken by UPPAAL which is a model checker for timed automata.

11.5 Modeling distributed systems

The final case study concerns distributed systems, which are systems com-
posed of several computers (nodes) without access to a common memory;
they synchronize and communicate using channels alone. The natural way
to model a distributed system in PROMELA is to represent the nodes as
processes and the communications channels as channels. We show how to
model a distributed algorithm in this manner, and then show how to sim-
plify the model to enable efficient verification.

The nodes of a distributed system are invariably computers that them-
selves contain multitasking systems. Since there is no structuring construct
in PROMELA except for processes, both nodes and processes within the nodes
must be modeled by the proctype construct. The channels enable synchro-
nization between nodes, so another mechanism like atomic sequences is usu-
ally used to synchronize between processes of the same node.

Here we use a different technique for modeling a node: There is a single
process for each node and the processes within the nodes are modeled by a
nondeterministic do-statement. Each time the do-statement is executed, one
of the alternatives is chosen, and this models the interleaving of the concur-
rent processes. The advantage of this design is that processes within a node
are naturally synchronized with no additional overhead; the disadvantage is
that we might miss errors that result when the node is implemented using a
lower-level mechanism for synchronization.

The other way in which a PROMELA model can differ from a naive im-
plementation of a distributed system is in its use of channels. Programs with
channels require a lot of resources to verify, so models with fewer channels
are to be preferred. Therefore, we will associate a single incoming channel
with each node, and the process sending a message will pass its identifica-
tion to the process receiving the message in an additional field. A similar
technique was used in some of the models of client-server systems in Sec-
tions 7.2 and 7.3.

4 The website for DTSPIN includes a different SPIN model for Fischer’s algorithm
written by Dragan Bošnački.

11.6 The Chandy–Lamport algorithm for global snapshots 187

11.6 The Chandy–Lamport algorithm for global snapshots

The distributed algorithm that will be modeled and verified is the Chandy–
Lamport algorithm for global snapshots; a snapshot a set of data giving a con-
sistent state of a distributed system. The presentation is divided into three
sections: in this section the algorithm is described; Section 11.7 contains a
PROMELA implementation of the algorithm, and Section 11.8 shows how to
transform the full implementation into a model suitable for verification.

A detailed presentation of the algorithm together with a mathematical
proof of its correctness is given in Section 11.4 of PCDP and in the original
article by Chandy and Lamport [7].

In a system with shared memory, obtaining a snapshot is easy: simply
block all the processes and make a copy of the shared memory. The problem
with obtaining a snapshot in a distributed system is that the nodes can com-
municate only by messages, which are not transferred instantly and can take
time to move through the channels; it follows that there is no global “bird’s-
eye” view of the system. If Node 1 sends a message m to Node 2, it is possible
for the message to get temporarily “lost” because Node 1 thinks that it had
sent the message, while Node 2 doesn’t yet know of its existence. A snapshot
is consistent if it can unambiguously identify every message that has been
sent as either received or as still in the channel.

The Chandy–Lamport algorithm solves the problem by adding a new
type of message called a marker. Markers are sent by each node over each out-
going channel as a signal that the node has recorded its state. Every message
sent before the marker “belongs” to either the receiving node or the channel.

The following diagram shows seven messages in a channel between the
two nodes:

Node 1 Node 2-
m6, m5, m4, m3, m2, m1, m0

Suppose that the marker has been sent after message m4:

Node 1 Node 2-
m6, m5, marker, m4, m3, m2, m1, m0

Node 1 records its state as having sent message m0 through m4. It is now the
responsibility of Node 2 to record that it has received a subsequence of the
messages, say m0 through m2, while the rest of the messages, here m3 and m4,
are recorded as being in the channel.

Let us see how Node 2 can record a subsequence of the messages as re-
ceived. Recall that Node 2 may have channels incoming from other nodes

188 11 Case Studies∗

such as Node 3. Suppose that Node 2 has received messages m0 through m2

from Node 1, messages n0 and n1 from Node 3, and then receives a marker
from Node 3:

Node 1 Node 2-
m6, m5, marker, m4, m3

Node 3
n4, n3, n2, marker

6

Upon receipt of the marker, Node 2 records its state: messages m0 through m2

received from Node 1 and messages n0 and n1 received from Node 3. When
the marker is finally received from Node 1, the state of Node 2 has already
been recorded, so the messages m3 and m4 have to be identified as belonging
to the channel.

The algorithm at each node consists of four processes:

• Process Send message sends messages on an outgoing channel; it records
the last message sent on that channel (in a variable lastSent).

• Process Receive message receives messages on an incoming channel and
records the last message received (in a variable lastReceived).

• Process Receive marker receives a marker on an incoming channel. First
it records the last message that was received on this channel before the
marker (in a variable messageAtMarker). Then, if the state has not yet
been recorded, the set of messages sent on each outgoing channel is
recorded (in a variable stateAtRecord) and the set of messages received
on each incoming channel is recorded (in a variable messageAtRecord).
Finally, the markers are sent on all outgoing channels.

• Process Display state waits until markers have been received on all in-
coming channels and then displays the recorded state.

The state of each node consists of the set of messages sent on its outgoing
channels before it recorded its state, and the set of messages received on its
incoming channels before it recorded its state. For each incoming channel on
which a marker is received after the node has recorded its state, the messages
between messageAtRecord and messageAtMarker are assigned by the node
to the state of that channel.

Figure 11.3 shows the diagram of a distributed system that will be used in
the PROMELA models. It consists of three nodes – Node 1, Node 2, Node 3 –
that send messages to each other on directed channels, together with an envi-
ronment node, Node 0, which will be responsible for initiating the algorithm.

11.7 The Chandy–Lamport snapshot algorithm in PROMELA 189

Environment

Node 0

Node 2

Node 1

Node 3

�
�

�
�

�
��*

HHHHHHHj

H
H

H
HH

HHj

��������

6

?

Fig. 11.3. A directed graph of nodes

A random simulation of the PROMELA program from the next section
gave the following output for the snapshot:

Node 1, last sent to 2 = 2

Node 1, last received from 2 = 7

Messages in channel 2 -> 1 = 8 .. 12

Node 1, last sent to 3 = 17

Node 3, last received from 1 = 17

Node 3, last sent to 2 = 6

Node 2, last sent to 1 = 12

Node 2, last received from 1 = 2

Node 2, last received from 3 = 3

Messages in channel 3 -> 2 = 4 .. 6

Check the consistency of the snapshot. For example, Node 2 sent messages 0
through 12 to Node 1; of these messages, 0 through 7 were received by Node

1, while messages 8 through 12 remained in the channel.

11.7 The Chandy–Lamport snapshot algorithm in PROMELA

The implementation of the snapshot algorithm is somewhat complex, but
it is worth studying in order to see how the constructs of PROMELA work
together in a large program. It is also instructive to compare the straightfor-
ward implementation of the algorithm in this section with a model designed
for efficient verification that is presented in Section 11.8. Since the program
is long, it will be presented in segments. The implementation of PrintState
can be found in the software archive.

An alternate implementation of the snapshot algorithm is given in the
software archive for PCDP: four separate processes are used to model each

190 11 Case Studies∗

Listing 11.15. Structure of the snapshot program

1 #define NODES 4

2

3 mtype = { message, marker };

4 chan ch[NODES] = [NODES] of { mtype, byte, byte };

5

6 proctype Env(byte outgoing) { ... }

7

8 proctype Node(byte me;

9 byte numIncoming; byte incoming;

10 byte numOutgoing; byte outgoing) {

11 do
12 :: /* Send a message */

13 :: /* Receive a message */

14 :: /* Receive a marker */

15 :: markerCount == numIncoming ->

16 PrintState();

17 break
18 od
19 }

20

21 init {

22 atomic {

23 run Env(4+2);

24 run Node(1, 2, 4+1, 2, 8+4);

25 run Node(2, 3, 8+2+1, 1, 2);

26 run Node(3, 1, 2, 1, 4)

27 }

28 }

node instead of the one process per node used here, and the identities of
incoming and outgoing channels are stored in channels instead of the bit
encoding used here.

11.7.1 Structure of the program

The overall structure of the program is shown in Listing 11.15. The algorithm
is implemented as a single process per node; there is one proctype for the
environment node (line 6) and a separate one for the other nodes (lines 8–19).

11.7 The Chandy–Lamport snapshot algorithm in PROMELA 191

A nondeterministic selection of alternatives implements the four processes
described in the previous section (lines 12–17).

The source code for the environment node is given in Listing 11.16, while
the expansion of the comments for three of the four alternatives (lines 12–
14) is given in Listings 11.17 through 11.19. The fourth alternative (lines 15–
17) is executed to terminate the process for the node when markers have
been received on all the incoming channels. The processes themselves are
activated in an init process (lines 21–28); the first parameter is the ID of the
node and the other parameters are explained in the next subsection.

An array of channels is defined (lines 3–4), one for sending messages to
each node. The messages are triples composed of: (1) a message type declared
as an mtype with two values: message for a normal data message and marker

for the marker used in the snapshot algorithm; (2) a byte for the index of
the source node that is sending the message; and (3) a byte for the message
sequence number.

11.7.2 Encoding lists of channels

How should the topology of the distributed system be represented? Each
node needs to know the identities of its incoming and outgoing channels. For
example, in the diagram in Figure 11.3, Node 2 has three incoming channels
– to Node 0, Node 1, and Node 3 – but only one outgoing channel – to Node

1 – and this information is needed so that messages and markers will be sent
and received only on these channels.

There are three ways that we can store a data structure that is a subset of
the node IDs:

• An array of boolean flags: a flag is true if the node corresponding to the
array index is in the subset.

• A channel that contains the subset of the node IDs.
• An integer variable that encodes the subset: a bit is 1 if the position of the

bit is in the subset.

The array implementation is straightforward but inefficient because SPIN

does not pack an array of bits, so an array of boolean flags is implemented as
an array of bytes. Section 11.1 demonstrated the use of channels to store data
structures; here we demonstrate the third method.

Let us assume that there are at most eight nodes so that we can store the
indices of each subset of node IDs in a single byte, where bit i (starting from
the low-order bit) is 1 if node i is in the subset. For example, for Node 2 in
the diagram in Figure 11.3, the sets of incoming and outgoing channels are
represented by

192 11 Case Studies∗

Outgoing

Incoming

0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 1

These values are used to initialize the parameters incoming and outgoing in
the processes for the nodes (lines 6, 9–10, 23–26 of Listing 11.15). Additional
parameters numIncoming and numOutgoing give the number of incoming and
outgoing channels; this is done for simplicity and is redundant because their
values could be computed by counting the bits whose value is 1. What is im-
portant in this design is that the initialization of the model to a specific net-
work topology is encapsulated within the init process, while the processes
for the nodes are independent of the topology.

To check if a channel exists, we need to check if the corresponding bit is 1.
This is done by shifting the byte by a number of places equal to the index of
the channel and then masking the lowest-order bit. It is convenient to define
a macro to do this calculation:

#define isOne(v,n) (v >> n & 1)

The macro is used in guards: line 5 in Listing 11.16 and line 14 in List-
ing 11.19.

Warning

inline cannot be called from an expression.

11.7.3 The environment node

The code for the environment node is very simple; it simply sends a marker
on all outgoing channels (Listing 11.16). The global variable startSnapshot

is used just to obtain interesting simulations of the program. It blocks the
execution of the environment process (line 2) until a reasonable number of
messages have been sent by the nonenvironment nodes.

11.7.4 Local data for each node

The data required by the algorithm are stored in variables declared as local
variables in the proctype Node:

11.7 The Chandy–Lamport snapshot algorithm in PROMELA 193

Listing 11.16. The environment node

1 proctype Env(byte outgoing) {

2 startSnapshot;

3 for (I, 1, NODES-1)

4 if
5 :: isOne(outgoing,I) ->

6 ch[I] ! marker, 0, 0;

7 :: else
8 fi
9 rof (I)

10 }

byte lastSent[NODES];

byte lastReceived[NODES];

byte stateAtRecord[NODES];

byte messageAtRecord[NODES];

byte messageAtMarker[NODES];

The declarations are arrays because they store message numbers sent on out-
going channels or received from incoming channels, and a node may be con-
nected to every other node.

Two other variables are needed by the algorithm:

byte markerCount;

bool recorded;

markerCount counts the number of incoming markers; when markers have
been received on all incoming edges, its value equals numIncoming and
the process can print the state and terminate (lines 15–17 in Listing 11.15).
recorded is a flag that is used to ensure that a state is recorded only once.

Several variables are not strictly part of the algorithm but are needed to
write the program:

byte messageNumber;

byte destination;

byte source;

byte received;

The algorithm is modeled by sending messages consisting of a single integer
value, and messageNumber is used to generate the sequence of message num-
bers. The other three variables are temporary variables used to store channel
and message numbers needed in the send and receive statements.

194 11 Case Studies∗

Listing 11.17. Sending a message

1 :: numOutgoing != 0 ->

2 GetOutgoing();

3 if
4 :: full(ch[destination])
5 :: nfull(ch[destination]) ->

6 ch[destination] ! message(me, messageNumber);

7 lastSent[destination] = messageNumber;

8 messageNumber++;

9 if
10 :: messageNumber > MESSAGES ->

11 startSnapshot = true
12 :: else
13 fi
14 fi

11.7.5 Nodes of the distributed system

We now turn to the three alternatives in the Node processes. Listing 11.17
shows the alternative for sending a message (line 12 in Listing 11.15). Line 1
ensures that the code will still work even if a node is a sink with no out-
going channels. Line 2 chooses an arbitrary destination node; this is not
at all easy to do and is discussed separately in Section 11.7.6. A message is
sent on the channel destination (line 6), but only if that channel is not full
(line 5). Note the use of the alternate syntax for send statements: the mtype
field followed by the other fields in parentheses. Lines 9–13 unblock the en-
vironment process to start the snapshot after a certain number of messages
(MESSAGES) has been sent. All processes can execute these statements, though
only one is needed; repeatedly setting the variable startSnapshot to true
does no harm.

The next two alternatives (Listings 11.18 and 11.19) check the first mes-
sage in the node’s incoming channel to see if it is a message or a marker. The
receive statements (line 1 of both listings) have a value as the first argument,
so only the statement that matches the first message in the channel will be
executable. Since there is only one channel per node, the source node of the
message is included as a field, so that the receiving node can attribute it to
the correct incoming channel.

The code for receiving a message is easy and just requires that we store
its sequence number (Listing 11.18).

11.7 The Chandy–Lamport snapshot algorithm in PROMELA 195

Listing 11.18. Receiving a message

1 :: ch[me] ? message(source, received) ->

2 lastReceived[source] = received;

When a marker is received (Listing 11.19), the number of the last mes-
sage received is stored as required by the algorithm (line 2). markerCount
is incremented (line 3) and is used by the fourth alternative to determine if
the process can be terminated. There are now two possibilities: (a) a marker
has already been received and the state recorded so there is nothing more to
do (line 5), or (b) this is the first marker encountered. In the second case,
the state is recorded (lines 7–11) and then markers are sent on all outgo-
ing channels (line 12–18). If the state has already been recorded, the value
stored in messageAtMarker will likely be greater than that previously stored
in messageAtRecord. The difference between the two is the number of mes-
sages that will be attributed to the channel in the snapshot.

Listing 11.19. Receiving a marker

1 :: ch[me] ? marker(source, _) ->

2 messageAtMarker[source] = lastReceived[source];

3 markerCount++;

4 if
5 :: recorded -> skip
6 :: else ->

7 recorded = true;
8 for (I, 0, NODES-1)

9 stateAtRecord[I] = lastSent[I];

10 messageAtRecord[I] = lastReceived[I]

11 rof (I);

12 for (J, 0, NODES-1)

13 if
14 :: isOne(outgoing,J) ->

15 ch[J] ! marker(me, 0)

16 :: else
17 fi
18 rof (J)

19 fi

196 11 Case Studies∗

Listing 11.20. Nondeterministic choice of a channel

1 inline GetOutgoing() {

2 atomic {

3 byte num, out;

4 num = numOutgoing;

5 out = outgoing;

6 destination = 0;

7 do
8 :: (out & 1) == 0 ->

9 out = out >> 1;

10 destination++

11 :: (out & 1) == 1) ->

12 break
13 :: ((out & 1) == 1) && (num > 1) ->

14 num--;

15 out = out >> 1;

16 destination++

17 od
18 }

19 }

11.7.6 Nondeterministic choice of a channel

If the topology of the network were coded within each node, a simple nonde-
terministic if-statement would suffice for choosing a destination for sending
a message:

/* Choose destination in Node 1 */

if
:: destination = 2

:: destination = 3

fi

This is much more difficult to do if we want the code for each node to be
identical, but the basic idea is the same, as shown in the inline sequence
GetOutgoing (Listing 11.20). Each bit is examined in turn: if it is 0, skip to
the next bit (lines 8–10), but if it is 1, nondeterministically select whether to
use this channel (lines 11–12) or to look for the next one (lines 13–16). The
result of the execution of the algorithm is a channel number in the variable

11.8 Verification of the snapshot algorithm 197

destination that is used in Listing 11.17. The variable num (initialized from
numOutgoing) ensures that skipping over a channel is not done if this is the
last outgoing channel (line 13).

The code is executed only if numOutgoing is greater than zero (line 1 in
Listing 11.17) so we don’t have to worry that a channel will not be found.
The code is placed within atomic because it is just computing on local vari-
ables that cannot be affected by other processes. The values of outgoing and
numOutgoing are copied into the variables out and num, respectively, so that
the new variables can be used for computation without affecting the values
stored in the original ones.

Warning

Do not try to initialize these variables in their declarations (line 3);
if you do so, they will be initialized once at the beginning of the
process and not again, because inline does not introduce a new
scope.

11.8 Verification of the snapshot algorithm

The program for the snapshot algorithm given in the previous section is too
complex to verify efficiently. Rather than verifying the program, we need to
construct a model for the algorithm and verify the model instead.

A bit of thought should convince you that the correctness of the algorithm
is independent of the number of nodes and channels. It is true that we may
make programming errors in the loops and indices needed to keep track of the
sets of incoming and outgoing channels, but as far as the algorithm is con-
cerned, it is sufficient to check its behavior on a single channel. In principle,
a second channel is needed in order to model the case where a marker has
been received on one channel (and the state recorded) before the marker is
received on another channel. But it is not necessary to model the reception
of the first marker using a channel! It is sufficient if the action of recording
the state can occur at an arbitrary control point in the algorithm, and this is
easily modeled by nondeterministic selection.

The model will use two processes, a Sender and a Receiver connected by
a single channel. They use the following global variables:

198 11 Case Studies∗

mtype = { message, marker };

chan ch = [SIZE] of { mtype, byte };

byte lastSent, lastReceived,

messageAtRecord, messageAtMarker;

bool recorded;

The messages in the channel contain only the message type and number be-
cause there is only one sending process. The other variables are familiar from
the algorithm. They are declared globally so that they can be referred to in
correctness specifications.

The Sender process (Listing 11.21) sends a fixed number of messages
(lines 3–5); nondeterministically, it can also choose to send a marker (line 6).
Once the marker is sent, we know that the receiver will record its state, so
the sender process can terminate.

Listing 11.21. Verifying the snapshot algorithm (the sending process)

1 active proctype Sender() {

2 do
3 :: lastSent < MESSAGES ->

4 lastSent++;

5 ch ! message(lastSent)

6 :: ch ! marker(0) ->

7 break
8 od
9 }

The receiver (Listing 11.22) receives either a message (lines 4–5) or a
marker (lines 6–13) and updates its variables as specified by the algorithm.
There is a third alternative in the do-statement (lines 14–16): at any time be-
fore the state has been recorded, the receiver node can record its state. The
flag recorded is used (line 9) to prevent recording the state a second time
when the marker is received.

To complete the model we have to specify the channel capacity SIZE and
the number of messages sent MESSAGES. Even if the system we plan to build
has a large channel capacity, its full capacity need not be modeled. It is well
known that bugs tend to occur at the limits of a data structure, for example,
when it is empty or when it is full. If we choose SIZE to be four, we can claim

11.8 Verification of the snapshot algorithm 199

Listing 11.22. Verifying the snapshot algorithm (the receiving process)

1 active proctype Receiver() {

2 byte received;

3 do
4 :: ch ? message(received) ->

5 lastReceived = received

6 :: ch ? marker(_) ->

7 messageAtMarker = lastReceived;

8 if
9 :: !recorded ->

10 messageAtRecord = lastReceived

11 :: else
12 fi;
13 break
14 :: !recorded ->

15 messageAtRecord = lastReceived;

16 recorded = true
17 od
18 }

to have verified the algorithm if the marker is sent before or after the first or
the last element, as well as “in the middle”:

6 6 6 6 6

Choosing a larger value would not increase our confidence in the algorithm:
if it works when the marker is in the “middle” of the channel, it should also
work if the “middle” is larger.

We also have to choose the number of MESSAGES to the sent. Sending six
messages seems to be reasonable. Clearly you wouldn’t send fewer messages
than the channel capacity, because then you would not check the case of a
full channel; furthermore, there is no need to send more than one or two
messages beyond those needed to fill the channel.

What properties do we need to prove to verify the model of the snapshot
algorithm? Termination of the algorithm follows easily from the fact that the
graph is connected, so let us concentrate on verifying the safety of the algo-
rithm, namely, that the snapshot is consistent.

200 11 Case Studies∗

The algorithm only works if the channels are FIFO. It follows from the
semantics of PROMELA that the messages are received in FIFO order, but you
can add:

assert (received == (lastReceived+1))

after line 4 in Listing 11.22 to be sure.
The consistency of the snapshot follows from two assertions placed after

the do-statement in the receiver (line 17 of Listing 11.22):

assert (lastSent == messageAtMarker);

assert (messageAtRecord <= messageAtMarker)

The first assertion states that all messages sent before the marker have been
received. It is of course possible that the state had already been recorded
when the marker was received on the channel; in that case, the messages
between messageAtRecord and messageAtMarker are attributed to the chan-
nel rather than to one of the nodes. Since we are assured that messages are
received in FIFO order, it is sufficient to check the expression in second as-
sertion.

A SPIN verification of this model is immediate, as only about 3000 states
have to be checked.

A

Software Tools

The first section of this Appendix describes how to install SPIN. The follow-
ing sections present an overview of the SPIN-based tools that I have devel-
oped. The tools are written in JAVA and distributed both as source code and
as compiled jar files that can be run directly. For more detail on each tool,
consult the documentation that is included in the distributions. All this soft-
ware can be freely downloaded from the websites whose addresses are listed
in Appendix B.

A.1 SPIN

SPIN can be downloaded as an executable file for WINDOWS and LINUX. You
can also download the source code and build it for any system that has an
ANSI C compiler.

A C compiler is needed to compile the verifier programs that SPIN gen-
erates. In WINDOWS, gcc can be installed as part of CYGWIN, a LINUX-like
environment. If you do not wish to install the CYGWIN environment, gcc can
be obtained as part of the MINGW (Minimalist GNU for Windows) toolset.
Download and open the following archives in the order given:

binutils-N.tar.gz

gcc-core-N.tar.gz

mingw-runtime-N.tar.gz

w32api-N.tar.gz

where N is the version and build number. It is acceptable if some files are
overwritten when the archives are opened.

The environment variable Path should be set to include the directories
containing the SPIN executable file and the C compiler (for MINGW, this

202 A Software Tools

Fig. A.1. The JSPIN integrated development environment

defaults to c:\mingw\bin). The variable can be changed from the window
obtained by selecting:

Start/Control Panel/System/Advanced/Environment Variables/PATH

You are now ready to use SPIN as a command-line tool.

A.2 JSPIN

JSPIN is an integrated development environment for SPIN with a graphical
user interface (Figure A.1). The user interface consists of a single window
with menus, a toolbar and three adjustable panes where text is displayed. All
menu and toolbar commands have keyboard mnemonics or accelerators. The
left pane is used to display PROMELA source files. The lower pane is used to
display messages from both SPIN and JSPIN. The right pane is used to display
the output from printf statements, messages from SPIN (in particular those
concerning verification), and displays of data from random, interactive, and
guided simulations.

Most of the arguments used by SPIN are supplied automatically by JSPIN,
so that you only have to select a button to execute SPIN in one of its modes.

A.3 SPINSPIDER 203

You can explicitly add to or modify the arguments by selecting from the
Options menu.

During simulation runs the SPIN output is filtered and appears in the
right pane in tabular form, one state per line, as described in Sections 3.1.1
and 2.2.2.

JSPIN contains commands for translating formulas in linear temporal
logic into never claims and incorporating them into verification runs (Sec-
tion 5.3.3).

JSPIN is implemented using the SWING library of JAVA for building
graphical user interfaces. SPIN, the C compiler, and the verifiers are run by
forking subprocesses to execute commands that are built with the proper ar-
guments. The textual output from the subprocesses is piped back to JSPIN

for filtering and display.
The SPINSPIDER tool described in the next section is integrated into JSPIN,

although it can also be run independently from the command line.

A.3 SPINSPIDER

SPINSPIDER is a software tool for automatically generating the state tran-
sition diagram of a PROMELA program (Figure 4.1). When SPIN performs a
verification, it searches the full state space and sufficient information is avail-
able on the search to enable the construction of the state diagram. SPINSPI-
DER works with four input files (Figure A.2):

• the PROMELA source file;
• the debug file obtained by running a verification of the program with

the -DCHECK option and with a never claim that prints out the program
counters and variable values;

• the statement file obtained by running a verification with the -d option;
• the trail file of a computation.

The debug file traces the search state by state. It contains data written by a
special never claim in the source file; this claim is constructed automatically
from information (the number of processes and the variable names) supplied
interactively when running SPINSPIDER. The source file and the statement
file are used to translate codes in the debug file so that the location counters
can be displayed with a line number and the source code. These data are used
to create a description of the state diagram in dot graphics format. Then, the
DOT program is called to layout the diagram and to convert it to a displayable
graphics format such as PNG. Optionally, the trail file of a computation can be
used to emphasize a path within in the state diagram or to display a diagram
consisting only of a single path.

204 A Software Tools

Fig. A.2. The structure of SPINSPIDER

Promela
program

State
diagram
(dot)

State
diagram
(PNG)

-DCHECK file

-d file

Trail
file

- -

?

-

-

Verification SpinSpider

DOT

Figure A.3 shows the state diagram that was automatically generated for
the program in Listing 5.2 described in Section 5.5. Recall that that program
terminates but only for weakly fair computations. Attempting to verify the
LTL formula <>flag results in an error and the trail is used to emphasize the
cycle in the diagram corresponding to an infinite path.

A.4 VN: Visualizing nondeterminism

The use of the VN software tool for visualizing nondeterminism was de-
scribed in Section 8.2.

The structure of VN is shown in Figure A.4. An NDFA is first constructed
interactively using the JFLAP tool and saved in the XML format that JFLAP
defines. VN reads this file and displays the NDFA. A PROMELA program
similar to that in Listing 8.1 is generated from the NDFA and an input string.
Depending on the mode selected: Random, Create, Find or Next, the appro-
priate commands are built and subprocesses forked. Output from the sub-
processes is piped to VN and used to display computations.

VN writes instructions for drawing the NDFA and the paths in the dot

graphical format, and then calls the DOT tool to lay out the graphs and to
convert them into PNG format for display.

A.4 VN: Visualizing nondeterminism 205

Fig. A.3. State diagram generated by SPINSPIDER

206 A Software Tools

Fig. A.4. The structure of VN

NDFA
from
JFLAP

Promela
program

Path
diagram
(dot)

Trail
file

NDFA
diagram
(dot)

-

?? ?

-

Generation Simulation

Simulation

Verification

NDFA
diagram
(PNG)

Path
diagram
(PNG)

? ?
DOT DOT

B

Links

Websites for software
CYGWIN cygwin.com

DTSPIN www.win.tue.nl/~dragan/DTSpin

GRAPHVIZ (DOT) graphviz.org

JFLAP jflap.org

JSPIN, SPINSPIDER sourceforge.net/projects/pcdp,
stwww.weizmann.ac.il/g-cs/benari/jspin

MINGW mingw.org

SPARK www.sparkada.com

SPIN spinroot.com

Temporal logic patterns patterns.projects.cis.ksu.edu

UPPAAL uppaal.com

VN sourceforge.net/projects/pcdp,
stwww.weizmann.ac.il/g-cs/benari/vn

Websites for books
Principles of the Spin www.springer.com/978-1-84628-769-5

Model Checker
Mathematical Logic for stwww.weizmann.ac.il/g-cs/benari/books

Computer Science
Principles of Concurrent www.pearsoned.co.uk/ben-ari

and Distributed
Programming

The Spin Model Checker spinroot.com/spin/Doc/Book_extras

References

1. Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequential and Concur-
rent Programs. Springer, Berlin, 1991.

2. Michal Armoni and Judith Gal-Ezer. Introducing non-determinism. Journal of
Computers in Mathematics and Science Teaching, 25(4):325–359, 2006.

3. John Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, Harlow, UK, 2003.

4. M. Ben-Ari. Principles of Concurrent and Distributed Programming (Second Edition).
Addison-Wesley, Harlow, UK, 2006.

5. Mordechai Ben-Ari. Mathematical Logic for Computer Science (Second Edition).
Springer, London, 2001.

6. Mordechi Ben-Ari and Alan Burns. Extreme interleavings. IEEE Concurrency,
6(3):90, 1998.

7. K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

8. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, Cambridge, MA, 1999.

9. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in prop-
erty specifications for finite-state verification. In 21st International Conference on
Software Engineering, pages 411–420, 1999.

10. Robert W. Floyd. Nondeterministic algorithms. Journal of the ACM, 14(4):636–644,
1967.

11. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
Hemel Hempstead, UK, 1985/2004. http://www.usingcsp.com/cspbook.pdf.

12. Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading, MA, 2004.

13. Mike Jones. What really happened on Mars Rover Pathfinder. The Risks Digest,
19(49), 1997. http://catless.ncl.ac.uk/Risks/19.49.html.

14. Jane W. S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ, 2000.
15. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman, San Francisco, CA,

1996.

210 References

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New York, 1992.

17. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer,
New York, 1995.

18. Susan H. Rodger and Thomas W. Finley. JFLAP: An Interactive Formal Languages
and Automata Package. Jones & Bartlett, Sudbury, MA, 2006.

19. Theo C. Ruys. Towards Effective Model Checking. PhD thesis, University of Twente,
2001. http://wwwhome.cs.utwente.nl/~ruys/ruys-phd-thesis.pdf.

Index

accept, 157
acceptance cycle, 157
active, 1, 37
alternative, 11
anonymous variable, 110, 137–138
argument

-B, 171
-D, 100
-E, 65, 128, 147, 170
-F, 78
-I, 83, 101
-N, 78
-P, 101
-T, 32
-a, 25, 82, 84
-c, 25, 129
-d, 203
-e, 25, 129
-f, 77, 82, 84
-g, 27, 32
-i, 35, 83
-l, 21, 27, 160
-m, 116
-p, 27, 32
-r, 27
-s, 27
-t, 26, 129
-u, 3
-w, 151
CHECK, 203

COLLAPSE, 152
MA, 153
MEMLIM, 152
NFAIR, 84
NP, 160
SAFETY, 78

array, 95–96
two-dimensional, 97, 172

arrow
in conditional expression, 14
as separator, 11, 14

assert, 21
assertion, 19–23, 42
atomic, 38, 40, 56, 58, 123
atomic proposition, 72
atomicity, 33–34, 54–58

of rendezvous channel, 109

bit, 4, 96, 149
blocking, 47–50
bool, 4, 96, 149
bounded overtaking, 93
break, 15, 56
buffered channel, see channel, buffered
busy-waiting, 47
byte, 4

C
compiler, 4, 24, 99, 201
language, 1, 2, 5, 6, 10, 14, 24, 95, 97,

99, 143

212 Index

chan, 108
Chandy, K. M., 187
Chandy–Lamport algorithm, see

snapshot algorithm
channel, 105–124

array in message, 106
array of, 113
buffered, 106, 115–116, 123
capacity, 106
checking the content, 116–119
copying a message, 122, 166
exclusive access, 137
initializer, 106
local, 108
lost messages, 116
polling, 122–123
random receive, 119–120
rendezvous, 106, 109–115, 123
sorted send, 121, 181
variable, 108

character, 5
choice point, 34
client-server system, 64, 106
collapse compression, 152
command line

displaying simulation data, 27, 32
guided simulation, 26
interactive simulation, 35
invalid end state, 65
maximum steps, 3
non-progress cycle, 160
output of guided simulation, 43
random simulation, 3
verification, 25
verifying a liveness property, 82
verifying a safety property, 77
weak fairness, 84

comment, 2
compressing the state vector, 152
computation, 19
computational tree logic (CTL), 69
conditional compilation, 100
conditional expression, 14–15
control point, 10

counting loop, 16
critical section problem, 44–46, 50, 51,

58, 63, 70, 73–83, 86, 87, 89, 93, 146,
159, 181–185

CSP, 105

d_step, 40, 56–58, 101
deadlock, 44, 63, 138
deductive verification, 23
define, 76
depth-first search, 146
deterministic sequences, 40–42
Dijkstra, E.W., 10
dining philosophers problem, 138
discrete time, 174
display

of a computation, 30–33
of statements and variables, 27

distributed systems
modeling of, 186

do, 15
dot, 203, 204
DTSPIN, 186

else, 12
embedded C code, 143
empty, 117
enabled, 159
end state, 64–65, 170
errors, 25
exceptions, 142–143
executability, 49–50

fairness, 83–84
of semaphores, 60

false, 4
fi, 11
final state

suppressing print out of, 171
finitely presented, 74, 154
first in-first out, 60, 115, 120, 200
Fischer’s algorithm, 181–185
floating-point number, 5
Floyd, R. W., 168
for macro, see macro, for

Index 213

format specifier, 2, 5, 8
full, 117

ghost variable, 45, 85
goto, 17, 56, 126
guard, 11
guarded command, 10
guided simulation, 26, 42, 82

hashing
bitstate, 152
compact, 152
conflict, 150
table, 149–152

hidden, 137
Hoare, C.A.R., 105

if, 11
include, 17
indentation, automatic, 32
infinitely often, 89, 157
init, 38
initial value, 5
inline, 101, 103, 163

vs. macros, 103
input, 4, 143
installation of SPIN, 201–202
instantiation, see process, instantiation
int, 4
interactive simulation, 34–35, 131
interference, 35–40
interleaving, 29–31, 39
interpretation, 72
interrupt, 141
invariant, 21

JAVA, 8, 17, 201
JSPIN, 202–203

display options, 3
displaying simulation data, 27, 32
exclude variables and statements, 27
file operations, 3
filtering output, 4
guided simulation, 26
interactive simulation, 34

invalid end state, 65
LTL formulas, 77
maximize, 27
maximum steps, 3
MSC prefix, 4
non-progress cycle, 160
output of guided simulation, 43
random simulation, 3
variable width, 27
verification, 24
verifying a liveness property, 82
verifying a safety property, 77
weak fairness, 84

jumps, see goto

label, 17, 64
λ-transitions, 130
Lamport, L., 187
_last, 159
last in-first out, 66
latching, 88, 158
limit on the number of steps, 3
liveness property, 79–83, 156–157
local, 137
local variable, 7–8
location counter, 10

macro, 2, 100–101, 192
define, 8
for, 17
include, 17

memory management, 148–152
message sequence chart, 4
minimal automaton, 153
modeling registers, 37
mtype, 8, 149
multitasking, 47
mutual exclusion, 44

nempty, 117
never claim, 71, 153–159
nfull, 117
non-progress cycle, 159–161
noncritical section

failure in, 86

214 Index

nondeterminism, 13, 56, 60–62, 125–136,
168–172

nondeterministic finite automata,
125–133

np_ , 159, 161
NP problems, 133–136
_nr_pr, 39, 138
numeric data type, 4

od, 15
operator

increment and decrement, 6
PROMELA, 7
propositional, 71
temporal, 72

option sequence, 12
overtaking, 91

P = NP?, 135
pan, 25
partial order reduction, 93, 119, 142, 153
Pascal, 10
pc_value, 159
pid, 38, 138
_pid, 38, 111, 138
polling, see channel, polling
postcondition, 20
precedence, 90
precondition, 20, 21
preprocessor, 99–103

changing, 101
debugging, 101

printf, 2
printm, 8
priority, 140–142

global constraint, 140
inversion, 141
for simulation, 140

priority, 140
process, 1

death, 66
identifier, 38, 111, 138
instantiation, 37–38, 66
termination, 66
type, 38

proctype, 1, 38
program

array of channels, 113
atomic sequence, 55
busy-waiting, 48
check if channel is full/empty, 118
client-server, 107

with end state, 65
multiple, 112
with reply, 111
termination, 67

counting loop, 16
with a for-loop macro, 17
with interference, 40

critical section problem
abbreviated, 52
incorrect solution, 45

cycles in a directed graph, 173
days in a month, 12
deadlock, 51
deterministic step, 41
dining philosophers, 139
discriminant, 11
divide by zero, 142
eight-queens problem, 169
Fischer’s algorithm, 182, 184, 185
generating input, 148, 149
greatest common denominator, 15
init process, 39
inline, 102
integer division, 20, 22
interference, 36
interleaving, 30
interrupt handler, 141
maximum, 13

with error, 23
non-progress cycle, 160
noncritical section, 87
nondeterministic finite automaton,

127
Peterson’s algorithm, 92
random receive, 119
rendezvous, 109
reversing digits, 2

Index 215

satisfiability, 134
scheduler, 178

with priorities, 179, 180
separate watchdogs, 176, 177

semaphore, 59
set of processes, 37
snapshots, 190, 193–196

verification, 198, 199
sorted send, 121
sparse array, 98, 164–167
starvation, 80
sum of an array, 96
symbolic names, 9
unreliable relay, 57
verifying mutual exclusion, 46
weak fairness, 85

provided, 140

random
number, 60, 63
receive, see channel, random receive
simulation, 2–3, 13, 60, 131

rate monotonic scheduling, 181
real-time system, 174–175
receive statement, 107
register, 37
remote reference, 85, 159
rendezvous channel, see channel,

rendezvous
repetitive construct, 15–17
rof, 17
run, 38

safety property, 75–79, 155–156
SAT, 133, 136
scheduling algorithm, 173–181
selection statement, 10–15
semaphore, 58–60
semicolon as separator, 10
send statement, 106
shift and mask, 192
short, 4
shortest counterexamples, 83
show, 137
skip, 13

snapshot algorithm, 187–200
sorted send, see channel, sorted send
sparse array, 97, 163–166
SPINSPIDER, 203–204
stack, 147
starvation, 44
state, 19

reachable, 51
space, 19, 146
transition diagram, 51–54
vector, 148

STDIN, 4, 143
string, 5
strongly connected component, 154
stutter invariant, 93
symbolic name, 8
syntactic sugar, 4
syntax check, 3

temporal logic, 69–93, 154, 203
operator

always, 72, 75
collapsing sequences of, 88
duality, 84–85
eventually, 72, 79
next, 93
until, 72, 90–93

pattern, 88
translation to never claim, 77–79

termination, 66–67
thrashing, 152
timeout, 63, 66
timeout, 128
trail, 26, 82
true, 4
truncation, 6
truth table, 72
Tseitin, G.C., 136
type

conversion, 6
definition, 97–99

typedef, 97, 106, 164, 172

unless, 142
unsigned, 5

216 Index

UPPAAL, 186

V operator, 91
verification, 132
verifier, 24
VN, 127, 131–133, 204

warnings
array of bits, 96
arrays in message, 106
associativity of until, 92
atomic proposition, 78
buffered channel, 117
conditional expression, 14
control point, 18
CSP, 105
else

with channel expressions in guard,
117

forgetting in a loop, 16
vs. true in guard, 13

executability, 50

expressions are statements, 33
initialization, 5
inline, 103, 192, 197
interactive simulation, 35
label, 18
local variable, 7
negating LTL formulas, 78
negation of full and empty, 117
proctype parameters, 38
remote references, 86
scope of loop variables, 17
side-effects, 6
terminating SPIN, 79
thrashing, 152
weak fairness, 84
weak until operator, 91

watchdog, 128, 175
write-only variable, 171

xr, 137
xs, 137
XSPIN, 4, 137

	Cover
	Principles of the Spin Model Checker
	Copyright
	Foreword
	Preface
	Contents

	1 Sequential Programming in PROMELA
	2 Verification of Sequential Programs
	3 Concurrency
	4 Synchronization
	5 Verification with Temporal Logic
	6 Data and Program Structures
	7 Channels
	8 Nondeterminism
	9 Advanced Topics in PROMELA
	10 Advanced Topics in SPIN
	11 Case Studies
	A Software Tools
	References
	Index

